• Title/Summary/Keyword: Silver nanoparticles (AgNps)

Search Result 93, Processing Time 0.028 seconds

Utilization of Iodine for the Enhanced Permeance of Facilitated Olefin Transport Nanocomposite Membrane (올레핀 촉진수송 나노복합체 분리막의 투과도 향상을 위한 iodine의 활용)

  • Choi, Yeji;Lee, Eun Yong;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.448-452
    • /
    • 2014
  • Nanocomposite membrane to show facilitated olefin transport was prepared for enhanced separation performance. Addtion of halogen molecules into PVP/AgNPs/ TCNQ nanocomposite membrane was expected to further polarize the surface of AgNPs for enhancing the separation performance. The formation of AgNPs and presence of iodine was confirmed by TEM and EDS analysis, respectively. The separation performance for propylene/propane mixture was compared with that of PVP/AgNPs/TCNQ nanocomposite membrane. The long-term stability of membrane was investigated with time.

Study for Facilitated Olefin Transport Phenomena Using Silver Oxide (Silver Oxide를 이용한 올레핀 촉진수송 현상 연구)

  • Ji, Dahye;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • It was known that the polarlized surface of silver nanoparticles could be interacted revesibly with olefin molecules for facilitated olefin transport. However, it was thought that it can be regenerated by interaction between oxide surface of AgNPs and olefin molecules because the surface of the silver nanoparticles is easily oxidized in the air. In order to investigate the effect of the silver oxide, 5 wt% AgO or $Ag_2O$ was dispersed in polymer PVP solutions and 0.005~0.02% electron acceptor as TCNQ or p-BQ were added to fabricate the separation membrane. After the addition of the electron acceptor, it was expected to improve the polarity on the surface of the silver oxide and the degree of dispersion. The characteristics of the separation membrane were identified by the gas permeance, XPS and TEM.

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application

  • Velusamy, Palaniyandi;Kumar, Govindarajan Venkat;Jeyanthi, Venkadapathi;Das, Jayabrata;Pachaiappan, Raman
    • Toxicological Research
    • /
    • v.32 no.2
    • /
    • pp.95-102
    • /
    • 2016
  • In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

Effect of Annealing Temperature on Thermoelectric Properties of Ag2Se Nanoparticle Thin Films (저온 열처리 공정에 따른 Ag2Se 나노입자 박막의 열전특성)

  • Yang, Seunggen;Cho, Kyoungah;Yun, Junggwon;Choi, Jinyong;Kim, Sangsig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.611-616
    • /
    • 2016
  • In this study, we synthesized $Ag_2Se$ nanoparticles (NPs) in an aqueous solution and investigated the thermoelectric characteristics of $Ag_2Se$ NPs thin films on plastic substrates. Regardless of thermal annealing treatment, all the $Ag_2Se$ NPs thin films show the negative Seebeck coefficients, indicating the n-type characteristics. As the annealing temperature increases, the electric conductivity increases while the Seebeck coefficient decreases. The electric conductivity of the thin film annealed at $180^{\circ}C$ is larger by $10^6$ times, compared with the as-prepared thin film, And the maximum power density for the thin film annealed at $180^{\circ}C$ is calculated to be $44{\mu}W/cm^2$.

Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

  • Aly E. Abo-Amer;Sanaa M. F. Gad El-Rab;Eman M. Halawani;Ameen M. Niaz;Mohammed S. Bamaga
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1537-1546
    • /
    • 2022
  • Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

Optical Properties of Ag@Fe3O4 Core-Shell Nanoparticles (Ag@Fe3O4 코어-쉘 나노입자의 광학적 특성)

  • Song, Younseong;Koh, Kwangnak;Kim, Kyujung;Lee, Jaebeom
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.97-102
    • /
    • 2017
  • In this paper, we investigate the optical properties of $Ag@Fe_3O_4$ nanoparticles (NPs) composed of a plasmonic core and a magnetic shell. As the $Fe_3O_4$ shell with high refractive index (~2.42) is formed on the surface of the silver NPs having diameter of 60 nm, the wavelength of the localized surface-plasmon resonance (LSPR) is shifted from 420 nm to 650 nm, a so-called "redshift". Furthermore, through the use of three simulation models ($Ag@Fe_3O_4$ NP, $Fe_3O_4$ shell NP, and silver NP), the peak at 410 nm is seen to be the result of scattering by the $Fe_3O_4$ shell with 60 nm thickness, which would be useful in comprehending the complex optics in various nanoscale assemblies using similar NPs.