References
- Bhattacharya, R. and Mukherjee, P. (2008) Biological properties of "naked" metal nanoparticles. Adv. Drug Deliv. Rev., 60, 1289-1306. https://doi.org/10.1016/j.addr.2008.03.013
- Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P. and Misra, A. (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf., A, 339, 134-139. https://doi.org/10.1016/j.colsurfa.2009.02.008
- Das, J. and Velusamy, P. (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng., 45, 2280-2285. https://doi.org/10.1016/j.jtice.2014.04.005
- Narayanan, K.B. and Sakthivel, N. (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156, 1-13. https://doi.org/10.1016/j.cis.2010.02.001
- Wei, D. and Qian, W. (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces, 62, 136-142. https://doi.org/10.1016/j.colsurfb.2007.09.030
- Li, X., Xu, H., Chen, Z. and Chen, G. (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 270974.
- Dadosh, T. (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett., 63, 2236-2238. https://doi.org/10.1016/j.matlet.2009.07.042
- Shakeel, A., Mudasir, A., Babu, L.S. and Saiqa, I. (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., Doi:10.1016/J.Jare.2015.02.007.
- Husseiney, M.I., El-Aziz, M.A., Badr, Y. and Mahmoud, M.A. (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A, 67, 1003-1006. https://doi.org/10.1016/j.saa.2006.09.028
- Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., Mubarakali, D. and Velusamy, P. (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces, 102, 232-237. https://doi.org/10.1016/j.colsurfb.2012.08.018
- Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A., 96, 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
- Reddy, A.S., Chen, C.Y., Chen, C.C., Jean, J.S., Chen, H.R., Tseng, M.J., Fan, C.W. and Wang, J.C. (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 10, 6567-6574. https://doi.org/10.1166/jnn.2010.2519
-
Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P. and Liu, H. (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and
$AgNO_3$ . Bioresour. Technol., 103, 273-278. https://doi.org/10.1016/j.biortech.2011.09.118 - Liu, L., Canizares, M.C., Monger, W., Perrin, Y., Tsakiris, E., Porta, C., Shariat, N., Nicholson, L. and Lomonossoff, G.P. (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine, 23, 1788-1792. https://doi.org/10.1016/j.vaccine.2004.11.006
- Blum, A.S., Soto, C.M., Wilson, C.D., Brower, T.L., Pollack, S.K., Schull, T.L., Chatterji, A., Lin, T., Johnson, J.E., Amsinck, C., Franzon, P., Shashidhar, R. and Ratna, B.R. (2005) An engineered virus as a scaffold for three-dimensional selfassembly on the nanoscale. Small, 1, 702-706. https://doi.org/10.1002/smll.200500021
- Yu, L., Banerjee, I.A. and Matsui, H. (2003) Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition. J. Am. Chem. Soc., 125, 14837-14840. https://doi.org/10.1021/ja037117i
- Marshall, M., Beliaev, A., Dohnalkova, A., David, W., Shi, L. and Wang, Z. (2007) C-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Plos Biol., 4, 1324-1333.
- Lee, S.W., Mao, C., Flynn, C.E. and Belcher, A.M. (2002) Ordering of quantum dots, using genetically engineered viruses. Science, 296, 892-895. https://doi.org/10.1126/science.1068054
- Dias, M.A., Lacerda, I.C., Pimentel, P.F., de Castro, H.F. and Rosa, C.A. (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol., 34, 46-50. https://doi.org/10.1046/j.1472-765x.2002.01040.x
- Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. and Balasubramanya, R.H. (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 61, 1413-1418. https://doi.org/10.1016/j.matlet.2006.07.042
- Mariekie, G. and Anthony, P. (2006) Microbial production of gold nanoparticles. Gold Bull., 39, 22-28. https://doi.org/10.1007/BF03215529
- Shenton, W., Douglas, T., Young, M., Stubbs, G. and Mann, S. (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater., 11, 253-256. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7
- Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B. and Belcher, A.M. (2003) Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. U.S.A., 100, 6946-6951. https://doi.org/10.1073/pnas.0832310100
- Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K. and Paknikar, K.M. (2002) Microbial synthesis of semiconductor Cds nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 78, 583-588. https://doi.org/10.1002/bit.10233
- Awadalla, F.T. and Pesic, B. (1992) Biosorption of cobalt with the AMTTM metal removing agent. Hydrometallurgy, 28, 65-80. https://doi.org/10.1016/0304-386X(92)90065-8
- Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H. and Jose-Yacaman, M. (2003) Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357-1361. https://doi.org/10.1021/la020835i
- Hosea, M., Greene, B., Mcpherson, R., Henzl, M., Alexander, M.D. and Darnall, D.W. (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta, 123, 161-165. https://doi.org/10.1016/S0020-1693(00)86339-2
- Xie, J., Lee, J.Y., Wang, D.I. and Ting, Y.P. (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 3, 672-682. https://doi.org/10.1002/smll.200600612
- Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F. and Munoz, J.A. (2008) Characterization of the biosorption of cadmium, lead and copper with the brown algae Fucus vesiculosus. J. Hazard. Mater., 158, 316-323. https://doi.org/10.1016/j.jhazmat.2008.01.084
- Das, J. and Velusamy, P. (2013) Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater. Res. Bull., 48, 4531-4537. https://doi.org/10.1016/j.materresbull.2013.07.049
- Das, J., Das, M.P. and Velusamy, P. (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta, Part A, 104, 265-270. https://doi.org/10.1016/j.saa.2012.11.075
- Gopinath, V., Mubarakali, D., Priyadarshini, S., Meera, P.N., Noor, T. and Velusamy, P. (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces, 96, 69-74. https://doi.org/10.1016/j.colsurfb.2012.03.023
- Anshup, A., Venkataraman, J.S., Subramaniam, C., Kumar, R.R., Priya, S., Kumar, T.R., Omkumar, R.V., John, A. and Pradeep, T. (2005) Growth of gold nanoparticles in human cells. Langmuir, 21, 11562-11567. https://doi.org/10.1021/la0519249
- Larios-Rodriguez, E., Rangel-Ayon, C., Castillo, S.J., Zavala, G. and Herrera-Urbina, R. (2011) Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo. Nanotechnology, 22, 355601. https://doi.org/10.1088/0957-4484/22/35/355601
- Dwivedi, A.D. and Gopal, K. (2010) Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids Surf., A, 369, 27-33. https://doi.org/10.1016/j.colsurfa.2010.07.020
- Rai, M., Yadav, A. and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
- Agnihotri, S., Mukherji, S. and Mukherji, S. (2014) Size-controlled silver nanoparticles synthesized over the range 5-100 Nm using the same protocol and their antibacterial efficacy. RSC Adv., 4, 3974-3983. https://doi.org/10.1039/C3RA44507K
- Park, Y. (2014) A New Paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res., 30, 169-178. https://doi.org/10.5487/TR.2014.30.3.169
- Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N. and Kim, J.O. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 52, 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
- Sondi, I. and Salopek-Sondi, B. (2007) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182.
- Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. and Yacaman, M.J. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
- Song, H.Y., Ko, K.K., Oh, L.H. and Lee, B.T. (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cell. Mater., 11, 58.
- Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 10, 507-517. https://doi.org/10.1007/s11051-007-9275-x
- Ramamurthy, C.H., Padma, M., Samadanam, I.D., Mareeswaran, R., Suyavaran, A., Kumar, M.S., Premkumar, K. and Thirunavukkarasu, C. (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf. B Biointerfaces, 102, 808-815. https://doi.org/10.1016/j.colsurfb.2012.09.025
Cited by
- In situ formation of AgNPs on S. cerevisiae surface as bionanocomposites for bacteria killing and heavy metal removal vol.14, pp.8, 2017, https://doi.org/10.1007/s13762-017-1261-y
- : The progress in understanding the mechanism of nanoparticles’ formation vol.33, pp.5, 2017, https://doi.org/10.1002/btpr.2531
- antioxidant and cytotoxic potentials vol.45, pp.4, 2017, https://doi.org/10.1080/21691401.2016.1276923
- Antibacterial Activity of Silver Nanoparticles against Staphylococcus warneri Synthesized Using Endophytic Bacteria by Photo-irradiation vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01090
- Enhanced antibacterial activity of anodic aluminum oxide membranes embedded with nano-silver-titanium dioxide pp.1568-5616, 2018, https://doi.org/10.1080/01694243.2017.1386080
- New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications pp.1614-7499, 2017, https://doi.org/10.1007/s11356-017-9912-6
- : a green synthetic approach pp.2169-141X, 2017, https://doi.org/10.1080/21691401.2017.1408117
- Arsenic and Cadmium Bioremediation by Antarctic Bacteria Capable of Biosynthesizing CdS Fluorescent Nanoparticles vol.144, pp.3, 2018, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001293
- Advances in antimicrobial photodynamic inactivation at the nanoscale vol.6, pp.5, 2017, https://doi.org/10.1515/nanoph-2016-0189
- Kinetic study of gold nanoparticle mediated photocatalytic degradation of Victoria blue vol.8, pp.2, 2018, https://doi.org/10.1007/s13205-018-1116-3
- Oligodynamic Effect of Silver Nanoparticles: a Review pp.2191-1649, 2018, https://doi.org/10.1007/s12668-018-0552-1
- BTCB10: Likely Antibacterial and Cytotoxic Effects vol.2019, pp.1687-4129, 2019, https://doi.org/10.1155/2019/5168698
- Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm pp.1976-3794, 2019, https://doi.org/10.1007/s12275-019-8538-4