DOI QR코드

DOI QR Code

Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application

  • Received : 2015.07.28
  • Accepted : 2015.08.18
  • Published : 2016.04.15

Abstract

In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field.

Keywords

References

  1. Bhattacharya, R. and Mukherjee, P. (2008) Biological properties of "naked" metal nanoparticles. Adv. Drug Deliv. Rev., 60, 1289-1306. https://doi.org/10.1016/j.addr.2008.03.013
  2. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P. and Misra, A. (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf., A, 339, 134-139. https://doi.org/10.1016/j.colsurfa.2009.02.008
  3. Das, J. and Velusamy, P. (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng., 45, 2280-2285. https://doi.org/10.1016/j.jtice.2014.04.005
  4. Narayanan, K.B. and Sakthivel, N. (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156, 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  5. Wei, D. and Qian, W. (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces, 62, 136-142. https://doi.org/10.1016/j.colsurfb.2007.09.030
  6. Li, X., Xu, H., Chen, Z. and Chen, G. (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 270974.
  7. Dadosh, T. (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett., 63, 2236-2238. https://doi.org/10.1016/j.matlet.2009.07.042
  8. Shakeel, A., Mudasir, A., Babu, L.S. and Saiqa, I. (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., Doi:10.1016/J.Jare.2015.02.007.
  9. Husseiney, M.I., El-Aziz, M.A., Badr, Y. and Mahmoud, M.A. (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A, 67, 1003-1006. https://doi.org/10.1016/j.saa.2006.09.028
  10. Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., Mubarakali, D. and Velusamy, P. (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces, 102, 232-237. https://doi.org/10.1016/j.colsurfb.2012.08.018
  11. Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A., 96, 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  12. Reddy, A.S., Chen, C.Y., Chen, C.C., Jean, J.S., Chen, H.R., Tseng, M.J., Fan, C.W. and Wang, J.C. (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 10, 6567-6574. https://doi.org/10.1166/jnn.2010.2519
  13. Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P. and Liu, H. (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and $AgNO_3$. Bioresour. Technol., 103, 273-278. https://doi.org/10.1016/j.biortech.2011.09.118
  14. Liu, L., Canizares, M.C., Monger, W., Perrin, Y., Tsakiris, E., Porta, C., Shariat, N., Nicholson, L. and Lomonossoff, G.P. (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine, 23, 1788-1792. https://doi.org/10.1016/j.vaccine.2004.11.006
  15. Blum, A.S., Soto, C.M., Wilson, C.D., Brower, T.L., Pollack, S.K., Schull, T.L., Chatterji, A., Lin, T., Johnson, J.E., Amsinck, C., Franzon, P., Shashidhar, R. and Ratna, B.R. (2005) An engineered virus as a scaffold for three-dimensional selfassembly on the nanoscale. Small, 1, 702-706. https://doi.org/10.1002/smll.200500021
  16. Yu, L., Banerjee, I.A. and Matsui, H. (2003) Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition. J. Am. Chem. Soc., 125, 14837-14840. https://doi.org/10.1021/ja037117i
  17. Marshall, M., Beliaev, A., Dohnalkova, A., David, W., Shi, L. and Wang, Z. (2007) C-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Plos Biol., 4, 1324-1333.
  18. Lee, S.W., Mao, C., Flynn, C.E. and Belcher, A.M. (2002) Ordering of quantum dots, using genetically engineered viruses. Science, 296, 892-895. https://doi.org/10.1126/science.1068054
  19. Dias, M.A., Lacerda, I.C., Pimentel, P.F., de Castro, H.F. and Rosa, C.A. (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol., 34, 46-50. https://doi.org/10.1046/j.1472-765x.2002.01040.x
  20. Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. and Balasubramanya, R.H. (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 61, 1413-1418. https://doi.org/10.1016/j.matlet.2006.07.042
  21. Mariekie, G. and Anthony, P. (2006) Microbial production of gold nanoparticles. Gold Bull., 39, 22-28. https://doi.org/10.1007/BF03215529
  22. Shenton, W., Douglas, T., Young, M., Stubbs, G. and Mann, S. (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater., 11, 253-256. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7
  23. Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B. and Belcher, A.M. (2003) Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. U.S.A., 100, 6946-6951. https://doi.org/10.1073/pnas.0832310100
  24. Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K. and Paknikar, K.M. (2002) Microbial synthesis of semiconductor Cds nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 78, 583-588. https://doi.org/10.1002/bit.10233
  25. Awadalla, F.T. and Pesic, B. (1992) Biosorption of cobalt with the AMTTM metal removing agent. Hydrometallurgy, 28, 65-80. https://doi.org/10.1016/0304-386X(92)90065-8
  26. Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H. and Jose-Yacaman, M. (2003) Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357-1361. https://doi.org/10.1021/la020835i
  27. Hosea, M., Greene, B., Mcpherson, R., Henzl, M., Alexander, M.D. and Darnall, D.W. (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta, 123, 161-165. https://doi.org/10.1016/S0020-1693(00)86339-2
  28. Xie, J., Lee, J.Y., Wang, D.I. and Ting, Y.P. (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 3, 672-682. https://doi.org/10.1002/smll.200600612
  29. Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F. and Munoz, J.A. (2008) Characterization of the biosorption of cadmium, lead and copper with the brown algae Fucus vesiculosus. J. Hazard. Mater., 158, 316-323. https://doi.org/10.1016/j.jhazmat.2008.01.084
  30. Das, J. and Velusamy, P. (2013) Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater. Res. Bull., 48, 4531-4537. https://doi.org/10.1016/j.materresbull.2013.07.049
  31. Das, J., Das, M.P. and Velusamy, P. (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta, Part A, 104, 265-270. https://doi.org/10.1016/j.saa.2012.11.075
  32. Gopinath, V., Mubarakali, D., Priyadarshini, S., Meera, P.N., Noor, T. and Velusamy, P. (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces, 96, 69-74. https://doi.org/10.1016/j.colsurfb.2012.03.023
  33. Anshup, A., Venkataraman, J.S., Subramaniam, C., Kumar, R.R., Priya, S., Kumar, T.R., Omkumar, R.V., John, A. and Pradeep, T. (2005) Growth of gold nanoparticles in human cells. Langmuir, 21, 11562-11567. https://doi.org/10.1021/la0519249
  34. Larios-Rodriguez, E., Rangel-Ayon, C., Castillo, S.J., Zavala, G. and Herrera-Urbina, R. (2011) Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo. Nanotechnology, 22, 355601. https://doi.org/10.1088/0957-4484/22/35/355601
  35. Dwivedi, A.D. and Gopal, K. (2010) Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids Surf., A, 369, 27-33. https://doi.org/10.1016/j.colsurfa.2010.07.020
  36. Rai, M., Yadav, A. and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  37. Agnihotri, S., Mukherji, S. and Mukherji, S. (2014) Size-controlled silver nanoparticles synthesized over the range 5-100 Nm using the same protocol and their antibacterial efficacy. RSC Adv., 4, 3974-3983. https://doi.org/10.1039/C3RA44507K
  38. Park, Y. (2014) A New Paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res., 30, 169-178. https://doi.org/10.5487/TR.2014.30.3.169
  39. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N. and Kim, J.O. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 52, 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  40. Sondi, I. and Salopek-Sondi, B. (2007) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182.
  41. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. and Yacaman, M.J. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  42. Song, H.Y., Ko, K.K., Oh, L.H. and Lee, B.T. (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cell. Mater., 11, 58.
  43. Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 10, 507-517. https://doi.org/10.1007/s11051-007-9275-x
  44. Ramamurthy, C.H., Padma, M., Samadanam, I.D., Mareeswaran, R., Suyavaran, A., Kumar, M.S., Premkumar, K. and Thirunavukkarasu, C. (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf. B Biointerfaces, 102, 808-815. https://doi.org/10.1016/j.colsurfb.2012.09.025

Cited by

  1. In situ formation of AgNPs on S. cerevisiae surface as bionanocomposites for bacteria killing and heavy metal removal vol.14, pp.8, 2017, https://doi.org/10.1007/s13762-017-1261-y
  2. : The progress in understanding the mechanism of nanoparticles’ formation vol.33, pp.5, 2017, https://doi.org/10.1002/btpr.2531
  3. antioxidant and cytotoxic potentials vol.45, pp.4, 2017, https://doi.org/10.1080/21691401.2016.1276923
  4. Antibacterial Activity of Silver Nanoparticles against Staphylococcus warneri Synthesized Using Endophytic Bacteria by Photo-irradiation vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01090
  5. Enhanced antibacterial activity of anodic aluminum oxide membranes embedded with nano-silver-titanium dioxide pp.1568-5616, 2018, https://doi.org/10.1080/01694243.2017.1386080
  6. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications pp.1614-7499, 2017, https://doi.org/10.1007/s11356-017-9912-6
  7. : a green synthetic approach pp.2169-141X, 2017, https://doi.org/10.1080/21691401.2017.1408117
  8. Arsenic and Cadmium Bioremediation by Antarctic Bacteria Capable of Biosynthesizing CdS Fluorescent Nanoparticles vol.144, pp.3, 2018, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001293
  9. Advances in antimicrobial photodynamic inactivation at the nanoscale vol.6, pp.5, 2017, https://doi.org/10.1515/nanoph-2016-0189
  10. Kinetic study of gold nanoparticle mediated photocatalytic degradation of Victoria blue vol.8, pp.2, 2018, https://doi.org/10.1007/s13205-018-1116-3
  11. Oligodynamic Effect of Silver Nanoparticles: a Review pp.2191-1649, 2018, https://doi.org/10.1007/s12668-018-0552-1
  12. BTCB10: Likely Antibacterial and Cytotoxic Effects vol.2019, pp.1687-4129, 2019, https://doi.org/10.1155/2019/5168698
  13. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm pp.1976-3794, 2019, https://doi.org/10.1007/s12275-019-8538-4