• 제목/요약/키워드: Silver nanoparticles (AgNPs)

검색결과 93건 처리시간 0.023초

Microfluidic Image Cytometry (μFIC) Assessments of Silver Nanoparticle Cytotoxicity

  • Park, Jonghoon;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4023-4027
    • /
    • 2012
  • Cytotoxicity assessment of silver nanoparticles (AgNPs) was performed using MTT-based microfluidic image cytometry (${\mu}FIC$). The $LC_{50}$ value of HeLa cells exposed to AgNPs in the microfluidic device was estimated as 46.7 mg/L, which is similar to that estimated by MTT-based IC for cells cultured in a 96 well plate (49.9 mg/L). These results confirm that the ${\mu}FIC$ approach can produce cytotoxicity data that is reasonably well-matched with that of the conventional 96 well plate system with much higher efficiency. This ${\mu}FIC$ method provides many benefits including ease of use and low cost, and is a more rapid in vitro cell based assay for AgNPs. This may aid in speeding up data acquisition in the field of nanosafety and make a significant contribution to the quantitative understanding of nanoproperty-toxicity relationships.

Enhanced Internalization of Macromolecular Drugs into Mycobacterium smegmatis with the Assistance of Silver Nanoparticles

  • Sun, Fangfang;Oh, Sangjin;Kim, Jeonghyo;Kato, Tatsuya;Kim, Hwa-Jung;Lee, Jaebeom;Park, Enoch Y.
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권8호
    • /
    • pp.1483-1490
    • /
    • 2017
  • In this study, silver nanoparticles (AgNPs) were synthesized by the citrate reduction process and, with the assistance of n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, were successfully loaded with the macromolecular drug vancomycin (VAM) to form AgNP-VAM bioconjugates. The synthesized AgNPs, VAM, and AgNP-VAM conjugate were characterized by UV-visible spectroscopy, zeta potential analysis, confocal microscopy, and transmission electron microscopy. The effect of loading VAM onto AgNPs was investigated by testing the internalization of the bioconjugate into Mycobacterium smegmatis. After treatment with the AgNP-VAM conjugate, the bacterial cells showed a significant decrease in UV absorption, indicating that loading of the VAM on AgNPs had vastly improved the drug's internalization compared with that of AgNPs. All the experimental assessments showed that, compared with free AgNPs and VAM, enhanced internalization had been successfully achieved with the AgNP-VAM conjugate, thus leading to significantly better delivery of the macromolecular drug into the M. smegmatis cell. The current research provides a new potential drug delivery system for the treatment of mycobacterial infections.

Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

  • Venugopal, Adith;Muthuchamy, Nallal;Tejani, Harsh;Anantha-Iyengar-Gopalan, Anantha-Iyengar-Gopalan;Lee, Kwang-Pill;Lee, Heon-Jin;Kyung, Hee Moon
    • 대한치과교정학회지
    • /
    • 제47권1호
    • /
    • pp.3-10
    • /
    • 2017
  • Objective: Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods: AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results: SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions: Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial.

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Mandelic Acid 정량을 위한 은 나노입자에 의해 증가된 화학발광분석법 (Silver Nanoparticles Enhanced Chemiluminescence of Luminol-KIO4 System for the Determination of Mandelic Acid)

  • ;;김소연;조해진;이상학;김영호;최종하
    • 응용화학
    • /
    • 제15권1호
    • /
    • pp.21-24
    • /
    • 2011
  • A sensitive silver nanoparticles (Ag NPs) enhanced chemiluminescence (CL) method is reported for the determination of mandelic acid (MA). This method is based on the luminol-KIO4 system catalyzed by Ag NPs to produce CL spectra. Prepared Ag NPs were characterized by UV-visible spectra and TEM image. Under optimal condition, CL spectra of the system were responded linearly with the concentration of MA in the range of 2.5×10-9 to 2.0×10-8 mol L-1 (r=0.9989) with a detection limit of 1.2×10-10 mol L-1. The relative standard deviation of 1.0×10-7 mol L-1 MA was found 1.45 (n=9).

Kinetics, Isotherm and Adsorption Mechanism Studies of Letrozole Loaded Modified and Biosynthesized Silver Nanoparticles as a Drug Delivery System: Comparison of Nonlinear and Linear Analysis

  • PourShaban, Mahsa;Moniri, Elham;Safaeijavan, Raheleh;Panahi, Homayon Ahmad
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.493-502
    • /
    • 2021
  • We prepared and investigated a biosynthesized nanoparticulate system with high adsorption and release capacity of letrozole. Silver nanoparticles (AgNPs) were biosynthesized using olive leaf extract. Cysteine was capped AgNPs to increase the adsorption capacity and suitable interaction between nanoparticles and drug. Morphology and size of nanoparticles were confirmed using transmission electron microscopy (TEM). Nanoparticles were spherical with an average diameter of less than 100 nm. Cysteine capping was successfully confirmed by Fourier transform infrared resonance (FTIR) spectroscopy and elemental analysis (CHN). Also, the factors of letrozole adsorption were optimized and the linear and non-linear forms of isotherms and kinetics were studied. Confirmation of the adsorption data of letrozole by cysteine capped nanoparticles in the Langmuir isotherm model indicated the homogeneous binding site of modified nanoparticles surface. Furthermore, the adsorption rate was kinetically adjusted to the pseudo-second-order model, and a high adsorption rate was observed, indicating that cysteine coated nanoparticles are a promising adsorbent for letrozole delivery. Finally, the kinetic release profile of letrozole loaded modified nanoparticles in simulated gastric and intestinal buffers was studied. Nearly 40% of letrozole was released in simulated gastric fluid with pH 1.2, in 30 min and the rest of it (60%) was released in simulated intestinal fluid with pH 7.4 in 10 h. These results indicate the efficiency of the cysteine capped AgNPs for adsorption and release of drug letrozole for breast cancer therapy.

Green Synthesis of Nanoparticles Using Extract of Ecklonia Cava and Catalytic Activity for Synthetic Dyes

  • Kim, Beomjin;Song, Woo Chang;Park, Sun Young;Park, Geuntae
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1171-1184
    • /
    • 2020
  • The green synthesis of inorganic nanoparticles (NPs) using biomaterials has garnered considerable attention in recent years because of its eco-friendly, non-toxic, simple, and low-cost nature. In this study, we synthesized NPs of noble metals, such as Ag and Au using an aqueous extract of a marine seaweed, Ecklonia cava. The formation of AgNPs and AuNPs was confirmed by the presence of surface plasmon resonance peaks in UV-Vis absorption spectra at approximately 430 and 530 nm, respectively. Various properties of the NPs were evaluated using characterization techniques, such as dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Phytochemicals in the seaweed extract, such as phlorotannins, acted as both reducing and stabilizing agents for the growth of the NPs. The green-synthesized AgNPs and AuNPs were found to exhibit high catalytic activity for the decomposition of organic dyes, including azo dyes, methylene blue, rhodamine B, and methyl orange.

감마선에 의해 제조된 Poly(vinyl alcohol) 하이드로젤에서 Silver Nanoparticle의 제조 및 항균 특성 (Synthesis, Characterization and Antibacterial Activity of Silver Nanoparticles in Poly(vinyl alcohol) Prepared by Gamma-Ray Irradiation)

  • 김현아;박종석;최종배;임윤묵;노영창
    • 폴리머
    • /
    • 제36권1호
    • /
    • pp.71-75
    • /
    • 2012
  • 본 연구는 폴리(비닐 알코올)(PVA) 하이드로젤 안에 $AgNO_3$ 용액을 이용하여 은 나노입자(AgNPs)를 제조하였다. PVA 입자를 증류수에 용해시킨 후, 50 kGy 감마선을 조사하여 PVA 하이드로젤을 제조하였다. 감마선을 이용하여 제조된 PVA 하이드로젤을 0.01, 0.05 M 질산은 수용액에 1시간 동안 침지후, 팽윤된 하이드로젤을 꺼내 감마선을 재조사하여 PVA 하이드로젤 내부에 AgNPs를 제조하였다. AgNPs가 함유된 PVA 하이드로젤의 UV 흡수 특성 및 FE-SEM 측정 결과, 감마선 조사량이 증가할수록 AgNPs의 생성이 증가하는 것을 확인할 수 있었으며, 같은 조사량에서 $AgNO_3$ 용액의 농도가 클수록 AgNPs 생성이 증가하였다. 액체배지 및 고체배지를 이용하여 그람 음성 세균인 E.coli와 S.aureus에 대한 PVA 하이드로젤에 생성된 AgNPs의 항균 실험 결과 매우 우수한 항균 효과를 나타냈다.

키토산-은나노 녹색합성 복합물질을 적용한 항균 기능성 포장지 연구 (A Study of Antibacterial Paper Packaging Material Coated with Chitosan-Ag Nanocomposite Prepared by Green Synthesis)

  • 경규선;고성혁
    • 펄프종이기술
    • /
    • 제46권2호
    • /
    • pp.8-15
    • /
    • 2014
  • A novel antibacterial paper coated with chitosan-based silver (Ag) nanocomposite prepared by green synthesis has been investigated for a wide range of application in food, agricultural and medical packaging. Green synthesis of Ag nanoparticles (AgNPs) was carried out by a chemical reaction involving a mixture of chitosan-silver nitrate (AgNO3) in an autoclave at 15 psi, $121^{\circ}C$, for 15-120 sec. AgNPs and their formation in chitosan were confirmed by both UV-Vis spectroscopy and transmission electron microscope (TEM). Fourier transform infrared spectroscopy (FTIR) study showed that free amino groups in chitosan act as an effective reductant and AgNPs stabilizer. Antibacterial test of coated paper with as-prepared chitosan-AgNPs was performed qualitatively against E. coli based on the formation of halo zones around coated papers and it was shown to be effective in suppressing the growth of E. coli with increasing Ag contents in coating layer.

은 카바메이트 복합체를 이용한 라디칼 중합에 의한 은/폴리스티렌 나노복합체의 제조 (Preparation of Silver/Polystyrene Nanocomposites by Radical Polymerization Using Silver Carbamate Complex)

  • 박헌수;박형석;공명선
    • 폴리머
    • /
    • 제34권2호
    • /
    • pp.144-149
    • /
    • 2010
  • Ag/polystyrene(PS) 나노복합체를 110 $^{\circ}C$의 가열법에 의하여 silver 2-ethylhexylcarbamate(Ag-CB) 복합체의 환원과 동시에 라디칼 중합을 진행하여 제조하였다. 또한, 이러한 전통적인 가열법과는 대조적으로 마이크로파를 조사하여 스티렌 단량체의 중합이 진행됨이 없이 은 나노입자가 잘 분산된 콜로이드 스티렌 용액을 제조할 수 있었다. 이렇게 단지 마이크로파를 조사하여 은 나노입자를 제조하는 방법은 반응기 내의 전체 용액 속에서 균일하고 빠르게 진행되어 매우 입자가 작고 균일한 은 나노콜로이드 용액을 제조할 수 있었다. 또한, 연속적으로 얻어진 은 나노입자를 포함하는 단량체 용액을 라디칼 중합시킴으로써 PS 고분자 매트릭스에 은 나노입자가 잘 분산된 Ag/PS 나노복합체를 얻을 수 있었다. Ag/PS(0.1/100) 나노복합체는 Ag/PS(4.0/100)를 마스터배치로 사용하여 용융-혼합 방법에 의하여 성공적으로 제조할 수 있었으며 그러한 나노복합체를 UV-VIS spectroscopy, TEM, 그리고 XRD를 이용하여 확인하였다.