• Title/Summary/Keyword: Silo concrete

Search Result 30, Processing Time 0.026 seconds

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment

  • Yulim Lee;Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2889-2896
    • /
    • 2023
  • The waste acceptance criteria for heavy metals in mixed waste should be developed by reflecting the leaching behaviors that could highly depend on the repository design and environment surrounding the waste. The current standards widely used to evaluate the leaching characteristics of heavy metals would not be appropriate for the silo-type repository since they are developed for landfills, which are more common than a silo-type repository. This research aimed to explore the leaching behaviors of cementitious waste with Pb, Cd, and Sb metallic and oxide powders in an environment simulating a silo-type radioactive waste repository. The Toxicity Characteristic Leaching Procedure (TCLP) and the ANS 16.1 standard were employed with standard and two modified solutions: concrete-saturated deionized and underground water. The compositions and elemental distribution of leachates and specimens were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy (SEM-EDS). Lead and antimony demonstrated high leaching levels in the modified leaching solutions, while cadmium exhibited minimal leaching behavior and remained mainly within the cement matrix. The results emphasize the significance of understanding heavy metals' leaching behavior in the repository's geochemical environment, which could accelerate or mitigate the reaction.

An analysis of the farm silo supported by ground (地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 -)

  • Cho, Jin-Goo;Cho, Hyun-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

Structural stability analysis of waste packages containing low- and intermediate-level radioactive waste in a silo-type repository

  • Byeon, Hyeongjin;Jeong, Gwan Yoon;Park, Jaeyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1524-1533
    • /
    • 2021
  • The structural stability of a waste package is essential for containing radioactive waste for the long term in a repository. A silo-type disposal facility would require more severe verification for the structural integrity, because of radioactive waste packages staked with several tens of meters and overburdens of crushed rocks and shotcretes. In this study, structural safety was analyzed for a silo-type repository, located approximately 100 m below sea level in Gyeongju, Korea. Finite element simulation was performed to investigate the influence of the loads from the backfilling materials and waste package stacks on the mechanical stress of the disposed of wastes and containers. It was identified that the current design of the waste package and the compressive strength criterion for the solidified waste would not be enough to maintain structural stability. Therefore, an enhanced criterion for the compressive strength of the solidified waste and several reinforced structural designs for the disposal concrete container were proposed to prevent failure of the waste package based on the results of parametric studies.

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development (월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발)

  • Lim, Doo-Hyun;Kim, Jee-Yeon;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • An integrated model for groundwater flow and radionuclide transport analyses is being developed incorporating six underground silos, an excavated damaged zone (EDZ), and fractured host rock. The model considers each silo as an engineered barrier system (EBS) consisting of a waste zone comprising waste packages and disposal container, a buffer zone, and a concrete lining zone. The EDZ is the disturbed zone adjacent to silos and construction & operation tunnels. The heterogeneity of the fractured rock is represented by a heterogeneous flow field, evaluated from discrete fractures in the fractured host rock. Radionuclide migration through the EBS in silos and the fractured host rock is simulated on the established heterogeneous flow field. The current model enables the optimization of silo design and the quantification of the safety margin in terms of radionuclide release.

-An Analysis of Pre-Stressed Concrete Farn Sild by the Finite Element Method- (유한요소법에 의한 PC 농업용 사이로의 해석에 관한 연구 -제2보 탄성지반에 놓인 경우-)

  • 조진구;조현영;박병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.73-83
    • /
    • 1982
  • study aims to derive a rational method for the analysis of the farm silo supported on an elastic foundation in which it is assumed that the reaction pressure of the soil at a point is proportional to the deflection at that point. In order to investigate the effects of an elastic foundation on the behaviour of the structures on it, the analysis of the farm silo resting on an elastic foundation was compared with the solution that the ground support may be assumed uniform (which was obtained from part I of this paper). To calculate the deformation of an elastic foundation, Boussinesq's solution which allows an interaction of the various parts of ground was adopted. In this case, the foundation was treated as a superparametric element additionally. In the evaluation of an element stiffness matrix, Gauss quadrature' was used. In above numerical integration, 3-point rule for the farm silo wall and the footing was introduced and 2-point rule for the evaluation of a reaction between the footing and the elastic foundation was adopted. The stresses of a farm silo on an elastic foundation were smaller than those which the distribution of contact pressure between the footing and the soil is assumed uniformly. Since the differences of stresses were remarkable in PS structures than RC structures, it is desirable that designers take into account the effect of an elastic foundation for the case of PS structures. It can be noted that while the effect of an elastic foundation was more conspicuously observed in near of the ground, the value of stresses at far from the soil was little affected by an supported soil.

  • PDF

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition (포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정)

  • Lee, Hang-Lo;Hong, Chang-Ho;Kim, Jin-Seop;Kim, Ji-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.39-55
    • /
    • 2022
  • This study carried out the laboratory tests for AE signal attenuation to determine the attenuation coefficient (α) of silo concrete in Gyeongju low and intermediate-level disposal environments. The concrete samples were prepared by satisfying the concrete mixing ratio used in the Gyeongju disposal silo, and these samples were additionally exposed depending on the temperature conditions and saturation and, dry condition. As a result of attenuation tests according to the transmission distance on three concrete specimens for each disposal condition, the AE amplitude and absolute energy measured on the saturated concrete were higher than that of the dry concrete in the initial range of the signal transmission distance, but the α of the saturated concrete was higher than that of the dry concrete. Regardless of the saturation and dry conditions, the α tended to decrease as the temperature increases. The α had a more major influence on the saturation and dry condition than the temperature condition, which means that the saturation and dry condition is the main consideration in measuring the signal attenuation of a concrete disposal structure. The α of concrete in the disposal environment expect to be used to predict the integrity of silos concrete in Gyeongju low and intermediate-level disposal environments by estimating the actual AE parameter values at the location of cracks and to determine the optimum location of sensors.