• Title/Summary/Keyword: Silk fibers

Search Result 174, Processing Time 0.019 seconds

A Study on the Alkali Hydrolysis of PET fabrics with Ultrasonic Application(II)- Surface Porosity and Oligomer Analysis - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(II) - 기공특성과 올리고머 분석 -)

  • 김삼수;서말용;박성우;윤태희;이승구;허만우
    • Textile Coloration and Finishing
    • /
    • v.14 no.6
    • /
    • pp.305-312
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The effects of ultrasonic application, treatment time and temperature at NaOH 4% and 6"A solution on the decomposition rate of PET fabrics. From the results of the decomposition rate of PET fabrics, the qualitative and quantitative analysis of oligomer after decomposition of PET fabrics carried out by the HPLC. On the other hand, the surface pore characteristics of decomposition PET fabrics measured by porosimetery. The pore characteristics on the surface of treated PET fiber depended on the decomposition rate and did not depend on the ultrasonic cavitation. The pore diameter of alkaline untreated PET fiber were 15A and those of treated PET fibers were 5~6$\AA$ at the maximum pore volume. The average pore sizes of fiber before and after treatment were 141 h and 160h, respectively. Total amount of oligomer of the untreated PET fibers were 1.70wt% and 67.7% of total oligomer occupied with PET cyclic trimer and PET cyclic tetramer. Total amount of oligomer of fiber with 26.9% and 48.0% of weight loss without ultrasonic application were 1.78wt% and 1.79wt%, respectively. Also total amount oligomer of fibers which were reduced 27.7% and 48.2% of weight loss with ultrasonic application were 1.74wt%. This result showed that the removal rate of oligomer in the process of alkaline hydrolysis with ultrasonic higher than that of without ultrasonic application.tion.

Dyeing of Silk Fabric with Aqueous Sorghum Extract (수수 추출물에 의한 견직물의 염색)

  • Lee, Sung-Eun;Bae, Do-Gyu;Jung, Yang-Sook
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.43-43
    • /
    • 2012
  • 본 연구에서는 대량으로 손쉽게 구 할 수 있는 식물염료를 확보하여 새로운 천연색소자원을 탐색하기 위해서 진행되었으며, 시료의 최적 추출 조건을 확립하고 추출된 색소의 실크에 대한 염색 특성을 살펴 최적 염색조건을 설정하고, 염색견뢰도를 평가하여 수수 등겨 추출물의 천연색소로의 활용에 대한 기초 자료를 마련하고자 하였다. 수수 색소 추출 시 생산성과 편리성을 고려하여 추출은 pH 4, 추출온도 $60^{\circ}C$, 추출시간 24시간이 적정조건으로 제시되었으며, 수수 추출물에 함유되어 있는 탄닌의 최대흡수파장은 282nm로 나타났다. 견직물의 pH에 따른 염색 특성은 pH가 증가할수록 K/S값이 증가하여 염착량이 증가하였으며, 염색온도가 높을수록 염색시간이 길어질수록 염착량이 증가하는 경향을 보여주고 있다, 염색온도가 높을수록 염색시간이 경과될수록 색상은 $Y{\rightarrow}YR$로 변화되는 것을 알 수 있었으며 염색온도가 높을수록 채도가 증가하였다. 욕비가 클수록 염착량은 감소하였으나, 채도는 약간 증가하는 것을 알 수 있었다. 매염제 처리에 의한 색상변화에서는 Al, Ni 매염은 색상변화는 적었지만, Cu와 Fe 매염은 명도와 채도를 크게 감소시키고 아울러 색상도 Cu는 적갈색으로 Fe는 진회색으로 변화되었다. Sn과 Ti 매염에 의해서 명도는 약간 감소하고 채도는 약간 상승하여 연한 주황색으로 색상이 변화하였다. 설정된 조건에서 염색된 염색포의 일광견뢰도는 2~3급, 세탁견뢰도 변퇴색은 2~3급, 오염은 4~5급으로 나타났다. Fe로 매염된 염색포의 일광견뢰도는 증가하여 3~4급으로 나타났으며, 매염제 처리에 의한 세탁 견뢰도는 같거나 약간 증가되는 것으로 나타났다.

  • PDF

Copying and Manipulating Nature: Innovation for Textile Materials

  • Rossbach, Volker;Patanathabutr, Pajaera;Wichitwechkarn, Jesdawan
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • This paper considers the potential impact of biological approaches such as bio-copying (biomimetics) and biomanipulating (e.g. genetic engineering) on future developments in the field of textiles and, in particular, fibres. If analytical tools for studying biological systems combined with those of materials science are further developed, and higher efficiency and reproducibility of genetic engineering technology can be achieved, the potential for the copying and manipulation of nature for textile innovations will be immense. The present state for both fields is described with examples such as touch and close fastener, structurally coloured fibres, the Lotus of lect (for bio-copying), as well as herbicide tolerant cotton, insecticide resistant cotton (Bt cotton), cotton polyester bicomponent fibres, genetically engineered silkworm and silk protein, and spider fibres. (for genetic engineering).

Color Changes according to the Extraction Condition of Caesalpinia sappan Dyestuff I (소목 염료의 추출조건이 색상에 미치는 영향 I)

  • Jeon, Hee-Young;Choi, Se-Min;Ahn, Jeong-Hoon;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.13 no.2
    • /
    • pp.136-144
    • /
    • 2009
  • The purpose of this study is to investigate various phenomena quantitatively occurring during the course of changing dyeing conditions of cotton and silk fibers in natural dyeing using Caesalpinia sappan. Paying attention to the fact that the color may be varied according to the extraction conditions of dyestuffs in Caesalpinia sappan dyeing, the color changes were investigated after dyeing using dyestuffs extracted at elevated temperature and dyestuffs extracted at room temperature. According to the extraction methods, the degree of color development for the category of red color and the category of yellow color has changed.

Sensory Evaluation of Fabric Touch by Free Modulus Magnitude Estimation

  • Cho, Gilsoo;Kim, Chunjeong;Casali, John G.
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.169-173
    • /
    • 2002
  • Fabric touch was evaluated psychophysically in order to determine the relationship between mechanical properties and subjective sensation. For subjective touch sensation, eight aspects such as hardness, smoothness, coarseness, coolness, pliability, crispness, heaviness and thickness were evaluated using free modulus magnitude estimation (FEME) technique. KES-FB was used to measure the mechanical properties of fabrics. Woolen fabric with the highest values of WC and weight was evaluated as the coarsest, heaviest and thickest. While silk crepe do chine with the lowest LT, G, 2HG, thickness and weight was rated as smoother and more pliable than any other fabrics. And flax with the highest values of LT and SMD was evaluated as hard, cool and crisp. Fabric touch and satisfaction were predicted well from the mechanical properties, especially from SMD, by regression analysis. Satisfaction for touch increased as smoothness increased.

Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application (이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용)

  • Lee, Sang-Hyun;Park, Tae-Joon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.409-420
    • /
    • 2010
  • Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

Dyeabilities with Various Fabrics and Chemical Composition of Brown Colorants from Pine Bark (적송수피 색소 성분의 화학적 조성과 섬유 염색성)

  • Kim, Yong-Sook;Bae, Soon Ei
    • Fashion & Textile Research Journal
    • /
    • v.15 no.1
    • /
    • pp.138-146
    • /
    • 2013
  • Chemical compositions and biological functions of brown colorants extracted from pine bark(Pinus densiflora) have been studied. Dyeing test using multifiber fabrics with extracted colorants were preliminary carried out. Dyeing conditions and fastness tests of selected fabrics have been also studied. The brown colorants were produced 1.5% concentrations by solvent extraction from milled pine bark using methanol. The colorants were extracted with 80% methanol as best choice by a criteria of solid quantity and dyeability on fabrics. The chemical compositions were identified as mixtures of taxifolin epicatechin and procyanidin by LC/MS analysis. The brown colorants could be dyed not only natural fibers such as cotton, silk and wool but also synthetic fiber as nylon and semi-synthetic fiber as viscose rayon. Maximum K/S values was shown at 400 nm according to different fiber with color appearance of redish brown. Optimum pH and temperature of dyeing conditions was 4 and above $80^{\circ}C$, respectively. The brown colorants had a strong antioxidant activity compared to Butylated hydroxyanisole as standard and weak antimicrobial activity against E. coli. compared to kanamycin. Washing, rubbing, perspiration, dry cleaning and light fastness for cotton, nylon and silk dyed with the brown colorants were carried out by KS K method. Most of color fastness such as washing, rubbing, perspiration, and dry cleaning were represented as 4-5 grade. However, light fastness was reported as 2-3 grade. From this studies, brown colorants produced pine bark have a high potentials for natural dyeing on fabrics with antioxidant activity.

Color Changes in Natural-Dyed Fabrics for Inference of the Original Color -through Repetitive Washing- (천연염색물의 본래색 추정을 위한 변퇴색 경로에 관한 연구 -반복세탁을 중심으로-)

  • 박명자;윤양노
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.4 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Compared with synthetic dyes, natural dyes have inferior colorfastness as a result of the exposure of the material to any environment that may be encountered during the processing, testing, storage, display or use of the dyed materials. Especially, colors on fabrics fade excessively after washing. Therefore, it is problem to infer the historic textiles with natural-dyed fabrics. The object of this study is to analyse the factors affected to colorfastness and color change during washing. In experimental, fifteen natural dyes were dyed by the Korean traditional dyeing methods onto natural fiber fabrics: cotton, silk, ramie, and flex. Total 49 dyed fabrics in combination with dyes and fibers were used for the specimen. The Launder-Ometer was used for evaluating the effects of exposure to repetitive washing from 1 to 20 washing cycles (KS K 0430). Color difference(ΔE) in the CIEL*A*B* color-order system were determined by spectrophotometer at 100 bserver. Washing caused significant changes in the color of natural-dyed fabrics. The degree and nature of color changes on the fabrics were dependent on the combination of fiber and the dye type used. The groups of violet(Lithospermum erythrorhizon Sieb.et Zucc) and black color(Ailanthus altissima Swingle, Phus trichocarpa Miq) yielded excellent colorfastness to repetitive washing. The group of indigo blue color(Polygonum tinctorium Lour.) was also very resistant to color change in washing except silk. Whereas the dye groups of Red, Yellow, Orange, Brown colors indicated greatest changes in color, particularly Carthamus tinctorius L.

  • PDF

Color Changes of Natural-Dyed Fabrics under Sunlight (일광노출에 의한 천연염직물의 색상변화에 관한 연구)

  • Park Myung-Ja;Lee Youn-Hee;Yoon Yang-Noh
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 2004
  • Natural dyes have poor colorfastness as a result of the exposure of the dyed fabric to sunlight encountered during the display or wearing. As colors on fabrics fade excessively under sunlight, it is a problem to infer and restore the historic textiles with natural-dyed fabrics to original colors. The object of this study is to analyse the factors affected to color change under light. In experimental, fifteen natural dyes were dyed by the Korean traditional dyeing methods onto natural fiber fabrics: cotton, silk, ramie, and flex. Total 49 dyed fabrics in combination with dyes and fibers were used for the specimen. The Weather-O-meter was used for evaluating the effects of exposure to light for 2.5 to 450 hours. The process of color changes in the CIEL *A*B* color-order system to the exposure time were determined by spectrophotometer at 10$^{\circ}$ observer. Sunlight exposure caused significant changes in the color of natural-dyed fabrics. The degree and nature of color changes on the fabrics were dependent on the combination of fiber and the type of dye used. The groups of violet(Lithospermum erythrorhizon Sieb.et Zucc.) and black color(Ailanthus altissima Swingle, Phus trichocarpa Miq) yielded excellent colorfastness to light. The group of indigo blue color(Polygonum tinctorium Lour.) was also very resistant to fading in both exposure except silk. Whereas the dye groups of Red, Yellow, Orange, Brown colors indicated greatest changes in fading, particularly Carthamus tinctorius L.

  • PDF

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.