• 제목/요약/키워드: Silk fibers

검색결과 174건 처리시간 0.025초

친환경 감물가공 소재의 자외선 조사에 의한 물리적 특성변화에 대한 연구 -견 및 나일론 직물- (Effects of U.V. Irradiation on the Physical Properties of Fabrics Treated with Eco-friendly Persimmon Juice -Silk and Nylon Fabrics-)

  • 김지민;김종준
    • 패션비즈니스
    • /
    • 제19권4호
    • /
    • pp.120-134
    • /
    • 2015
  • This study aimed to determine the physical properties of silk and nylon fabrics that are treated with persimmon juice in accordance with irradiation time of ultraviolet spectrum. Persimmon juice dyeing has the advantage of using the tannin component of the persimmon. Tannin plays an important role in inhibiting photodegradation of fibers or polymers. Among fibrous materials, silk and nylon are prone to deterioration by light. Hence, this study aimed to reduce these weaknesses of silk and nylon by applying persimmon juice treatment. We accordingly carried out investigation and experiments on ultraviolet irradiation, and physical characteristics of treated fabrics. The persimmon juice treatment process led to increased weight and thickness. In addition, the air permeability of silk fabric was increased, as compared to the control specimen; whereas, that of nylon fabric was decreased. Both drape stiffness and flex stiffness of silk and nylon tended to be high in textiles processed with persimmon juice treatment, as compared to the control textile. Peak load and elongation at peak load of untreated samples clearly decreased in both silk and nylon fabrics with the increase of ultraviolet irradiation time, while those of persimmon juice treated samples increased. Furthermore, ultraviolet blocking ratio measurement indicated that the fabric specimens treated with persimmon juice blocked U.V. spectrum better than the control specimen.

Silk and Cotton Textiles, the Principal Maritime Trade Commodities of Ancient India

  • DAYALAN, Duraiswamy
    • Acta Via Serica
    • /
    • 제6권2호
    • /
    • pp.91-116
    • /
    • 2021
  • India has had a rich and diverse textile tradition since the 3rd millennium BCE. The origin of Indian textiles can be traced back to the Harappan period. Owing to the hot and humid climate in most parts of India, cotton has remained India's favourite choice of fabric for normal use. Thus, India is supposed to be the first nation to have grown, woven, and patterned cotton fabrics. Moreover, India is one of the leading cotton-growing countries in the world. The earliest occurrence of cotton thread in India is roughly datable to 4000 BCE and of dyed fabrics to about 2500 BCE. Large numbers of needles and spindle-whorls found in Harappa and other early historic sites in India reveal the prosperous state of textile production and its trade in the early period. The textile producers used a wide range of skills to process raw materials and make regionally idiosyncratic dyes, weaves, prints, and embroideries. Additionally, the silk from wild indigenous forms of silkworms was known in the Indian sub-continent roughly contemporary with the earliest clear archaeological evidence for silk in China. The analysis of thread fragments found inside a copper bangle and ornament from Harappa and steatite beads from Chanhu-daro, have yielded silk fibers dating to 2500-2000 BCE. Apart from other products, cotton and silk textiles were important export materials from India right from the Harappan period. Actually, the sea-borne trade had played an important role in the economic growth and prosperity of the Harappan civilization. Several ancient seaports in the entire coastline of India played a vital role in the maritime trade during the Harappan period and cotton and silk textiles of Indian origin have been found in various countries. The contemporary writings and epigraphy have also attested to the vast maritime trade network of India and the export of textile materials. The paper discusses in detail the origin and development of cotton and silk textile production in India through the ages and its role in maritime trade networks.

Application of Electrospun Silk Fibroin Nanofibers as an Immobilization Support of Enzyme

  • Lee Ki Hoon;Ki Chang Seok;Baek Doo Hyun;Kang Gyung Don;Ihm Dae-Woo;Park Young Hwan
    • Fibers and Polymers
    • /
    • 제6권3호
    • /
    • pp.181-185
    • /
    • 2005
  • Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to $5.6\;wt\%$. The activity of immobilized a-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at $25^{\circ}C$ by retaining more than $90\%$ of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than $45\%$ of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.

Fine Structure of the Ampullate ilk Glands in the Wolf Spider, Pardosa astrigera (Araneae: Lycosidae)

  • Myung-Jin Moon
    • Animal cells and systems
    • /
    • 제2권4호
    • /
    • pp.513-520
    • /
    • 1998
  • Though the wandering spiders do not produce webs for prey-catching, they have silk producing apparatus. Among the four kinds of silk glands in the wolf spider, Pardosa astrigera, the ampullate one is the most predominant gland in both sexes, and is composed of three functional parts; excretory duct, storage ampulla and convoluted tail regions. The duct is basically composed of three superposed types of layers which are inner cuticles, monolayered epithelial cells and peripheral connective cells. The electron lucent subcuticles which have the functions of water removal and orientation of silk fibers during polymerization are well developed at the anterior region near the spinneret. Whereas the endocuticles which contain two types of banding patterns at the cross section are developed at the rest of the duct region. The secretory silks are synthesized within the glandular epithelial cells of the tail as secretory granules, and then released to the inner cavity of the storage ampulla by the mechanism of apocrine secretion. Most of these secretory vesicles are originated from the rough endoplasmic reticula of the glandular epithelial cells, whereas no Golgi complexes are found in any of the cells which have been examined.

  • PDF

Dyeing and Fastness Properties of a Reactive Disperse Dye on PET, Nylon, Silk and N/P Fabrics

  • Bae Jin-Seok;Park Jong-Ho;Koh Joon-Seok;Kim Sung-Dong
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.174-179
    • /
    • 2006
  • Dyeing and color fastness properties of a reactive disperse dye containing an acetoxyethylsulphone group on PET, Nylon, silk and N/P fabrics were examined. The reactive disperse dye exhibited almost the same dyeing properties on PET fabric as a conventional disperse dye except the level of dye uptake. The most appropriate pH and dyeing temperature for the dyeing of Nylon fabric were 7 and $100^{\circ}C$ respectively. The build-up on Nylon fabric was good and various color fastnesses were good to excellent due to the formation of the covalent bond. Application of the reactive disperse dye on silk fabric at pH 9 and $80^{\circ}C$ yielded optimum color strength. The rate of dyeing on Nylon fabric was faster than that on PET fabric when both fabrics were dyed simultaneously in a dye bath, accordingly color strength of the dyed Nylon was higher. The reactive disperse dye can be applied for one-step and one-bath dyeing of N/P mixture fabric with good color fastness.

Preparation, structure, and properties of cellulose nanofibril/silk sericin composite film

  • Jang, Mi Jin;Park, Byung-Dae;Kweon, HaeYong;Jo, You-Young;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, sericin has attracted increasing attention in biomedical and cosmetic research because of its useful properties including acceleration of wound healing, improvement of cell attachment, and inhibition of ultraviolet-B induced apoptosis. However, sericin films have poor mechanical properties, which restricts the application to those fields. In this study, cellulose nanofibril (CNF)/sericin composite films were fabricated by solvent casting, and the effects of ultrasonication time and CNF content on the solution turbidity, molecular conformation, and film mechanical properties of sericin film were examined. As the ultrasonication time increased, the turbidity of the CNF/sericin suspension decreased. Conversely, as the CNF content increased, the turbidity increased. However, ${\beta}$-sheet crystallization and mechanical properties remained almost unchanged by varying the ultrasonication time and CNF content, indicating that CNF is not effective to improve the mechanical properties of sericin films.

녹차색소의 특성과 염색성 (제1보) -녹차색소의 성분과 특성- (Characteristics and Dyeing Properties of Green Tea Colorants(Part I) -Components and characteristics of Green Tea Colorants-)

  • 신윤숙;최희
    • 한국의류학회지
    • /
    • 제23권1호
    • /
    • pp.140-146
    • /
    • 1999
  • Colorants in green tea were extracted freeze-dried and analyzed to investigate the possibility of using as a natural dye. Fractionation of the colorants was carried out by column chromatograpy. Colorants in green tea were eluted into five fractions. All the fractions except fraction F2 showed absorption peakat 280nm. Fraction f2 showed absorption peak at 270nm and broad peak at 350nm, From the IR analysis it is speculated that fractions F2-F5 having similar stucture but different molecular weight are catechis. Silk fabrics dyes with fractions F1-F4 showed yellowish red color while sample dyed with fraction F5 showed red color. The colorants from green tea infusion was applied to silk wool nylon cotton and rayon fabrices. It showed relatively good affinity to protein and polyamide fibers bur low affinity to cellulose and regenerated cellulose fibers.

  • PDF

초음파로 추출된 홍화색소의 특성 분석과 염색성 평가 (Physiochemical Properties and Dyeability of Safflower Colorants Extracted by Ultrasonic Treatment)

  • 김용숙;최종명
    • 한국의류산업학회지
    • /
    • 제11권2호
    • /
    • pp.337-343
    • /
    • 2009
  • This study systematically investigated a method for extraction of safflower (Carthamus tinctorius Linnaeus) colorants by ultrasonic treatment. Compared to pigments productivity and cell wall structures of safflower after general and ultrasonic method, the ultrasonic method showed high extraction efficiency of safflower pigments due to destruction of safflower cell wall caused by high vibration energies. Microscopic analysis confirmed the hypothesis that the ultrasonic treatment of safflower caused its cell wall structure loosened and made efficient extraction of safflower pigments. And also, LC-MS/MS analysis revealed that productivities of the yellow and red safflower pigments by ultrasonic method were 21.9% and 14.6% higher, respectively, than those of pigments extracted by general method. The ultrasonic extracted yellow and red colorants could be used to dye not only natural fibers like cotton, silk and wool, but also synthetic fiber like nylon, and generally gave a better color tone than the general extracted colorants from safflower due to the affinities of red and yellow colorant on different fibers. As the yellow and red colorant were extracted by ultrasonic treatment in water, the K/S value on of 550/440nm of cotton and rayon was increased but in the case of silk and wool the change of this value was almost not detected. Finally, this technique might provide a solution to establish reproducibility and standardization for the extraction and dyeing methods on fabrics.

Luster Properties of Polyester Micro-fiber Circular-Knitted Fabric and Fiber Luster Simulation

  • Jung, Jae-Myong;Kim, Jong-Jun;Jeon, Dong-Won
    • 패션비즈니스
    • /
    • 제7권3호
    • /
    • pp.60-70
    • /
    • 2003
  • Textile scientists have regarded the material appearance of natural fibers, especially that of silk or wool fibers, as the benchmark for reinventing the look and feel of the long term, friendly companion of mankind. The appearances or textures of the materials surrounding us in everyday life have long been interesting topics to many people.from scholars to painters. Even the simplest questions may require careful pondering. Why is the silk fabric so lustrous with subtlety? Recently, appearance models have become increasingly important in textile products. They are needed to model and simulate different models. In this study, the optical characteristics of filament yarns and knitted fabrics were investigated using images taken at various angles and illumination conditions. Then the images were analyzed using some image analysis techniques, such as thresholding and measuring luster blobs. The anisotropic nature of the filamentous specimens was studied based on the images acquired at different incident illumination and observing angles with several alignment positions of the fabric specimens. A few cylindrical models were generated using commercially available software, Rhinoceros, and then on the models, a ray-tracing algorithm based on a software, POV-Ray, was applied to simulate the appearance or lustrous images of the monofilament models.

앰포테릭섬유/산성염료계의 계면동전압 측정치에 대한 PCA (Principle Component Analysis on Electrokinetic Measurements for Amphoteric Fibers/Acid Dye System)

  • 박병기
    • 품질경영학회지
    • /
    • 제13권1호
    • /
    • pp.26-30
    • /
    • 1985
  • In the light of the properties of colloids, in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Nylon, wool and silk, the typical amphoteric fibers were dyed with Acid dye and various combinations were prepared by combining pH, temperature and dye concentration, in order to generate flowing electric potential which were measured by microviolt meter and specific conductivity meter. The results were transformed to Zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers, and these data were statistically analysed by principle component analysis.

  • PDF