• Title/Summary/Keyword: Silicone rubber mold

Search Result 16, Processing Time 0.026 seconds

Development of micromolding technology using silicone rubber mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • 정성일;임용관;박선준;최재영;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.46-49
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into tile other industry such as sensors, micro fluidics and displays. The MST, however. has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting. can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated. and then it applied to the fabrications of polishing pad and PDP barrier ribs.

  • PDF

Development of Micromolding Technology using Silicone Rubber Mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • Chung, Sung-Il;Im, Yong-Gwan;Kim, Ho-Youn;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1380-1387
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into the other industry such as sensors, micro fluidics and displays. The MST, however, has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting, can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated, and then it applied to the fabrications of polishing pad and PDP barrier ribs.

A Study on Plasma Display Panel Barrier Rib Fabrication by Silicone Rubber Tooling and electromagnetic Wave (실리콘고무형과 전자기파에 의한 PDP격벽의 성형에 관한 연구)

  • 정해도;손재혁;조인호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.20-23
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. The mold for forming the barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing processes such as screen printing, sand-blasting and photosensitive glass methods. The mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$, depth 124$\mu\textrm{m}$ , pitch 274$\mu\textrm{m}$ was acquired by machining of single crystal silicon with dicing saw blade. Maximum roughness of the bottom of the grooves was 59.6nm Ra in grooving Si. Barrier ribs were formed with silicone rubber mold, which is transferred from grooved Si forming hard mold. Silicone rubber mold has the elasticity, which enable to accommodate the waveness of lower glass plate of PDP. The methods assisted by the microwave and UV was adopted for reducing the forming time of glass paste.

  • PDF

Fabrication of Real 3D Shape Components Using Bi-Sn Alloys (Bi-Sn 합금을 이용한 3차원 미세 구조물의 제작기술 개발)

  • Chung, Sung-Il;Park, Sun-Joon;Im, Yong-Gwan;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.624-631
    • /
    • 2004
  • In this paper, new replication techniques fur a metal microcomponent having a real 3D shape were introduced. Helical gear was selected as one of a real 3D microcomponents for this study. The helical gear, which was made of photo-curable resin, was fabricated as a master pattern by microstereolithography technology. Then, a silicone rubber mold was fabricated from the master pattern. Lastly, a final bismuth alloy pattern was transferred from the silicone rubber mold by the microcasting process. In this paper, the replication technique is described in detail from the master pattern to the final pattern with some investigation on factors related to the technique.

A Study on Plasma Display Panel Barrier Rib Fabrication by Mold and Electromagnetic Wave (몰드와 전자기파에 의한 PDP격벽의 성형에 관한 연구)

  • Son, Jae-Hyeok;Im, Yong-Gwan;Jeong, Yeong-Dae;Jeong, Seong-Il;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.176-183
    • /
    • 2002
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. The mold for forming the barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing processes such as screen printing, sand-blasting and photosensitive glass methods. The mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper , Stripes of grooves of which width 48$\mu$m, depth 124$\mu$m , pitch 274$\mu$m was acquired by machining of single crystal silicon with dicing saw blade. Maximum roughness of the bottom of the grooves was 59.6 nm Ra in grooving Si. Barrier ribs were farmed with silicone rubber mold, which is transferred from grooved Si forming hard mold. Silicone rubber mold has the elasticity, which enable to accommodate the waviness of lower glass plate of PDP. The methods assisted by the microwave and UV was adopted for reducing the forming time of glass paste.

A Study on Mold Fabrication and Forming for PDP Barrier Ribs (PDP 격벽 성형용 몰드 제작과 성형에 대한 연구)

  • Jo, In-Ho;Jeong, Sang-Cheol;Jeong, Hae-Do;Son, Jae-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.171-176
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$ and 270${\mu}{\textrm}{m}$, depth 124${\mu}{\textrm}{m}$, pitch 274${\mu}{\textrm}{m}$ was acquired by machining hard and brittle materials of WC, Silicon, Alumina with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120nm, 287nm in grooving WC. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of bottom curvatures was 7.75${\mu}{\textrm}{m}$. This results satisfies the specification for barrier ribs of 50 inch XGA PDP if the groove form of mold was fully transferred to the barrier ribs. Barrier ribs were formed with Silicone rubber mold, which is transferred from grooved hard materials. Silicone rubber mold has elasticity accommodating the waveness of lower glass plate of PDP.

  • PDF

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

Effects of Carbon Black on Mechanical Properties and Curing Behavior of Liquid Silicone Rubber (LSR) (Carbon Black 첨가에 따른 액상 실리콘 고무(LSR)의 기계적 특성 및 경화 거동 분석)

  • Beom-Joo Lee;Seon-Ju Kim;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.27-32
    • /
    • 2023
  • Liquid silicon rubber (LSR) has fine thermal compatibility and is widely used in various fields such as medical care and automobiles because it is easy to implement products with good fluidity. With the recent development of flexible sensors, the focus has been on manufacturing conductive elastomers, such as silicone as elastic materials, and carbon black, CNT, and graphene are mainly used as nanomaterials that impart conductive phases. In this study, mechanical behavior and curing behavior were measured and analyzed to manufacture a CB-LSR complex by adding Carbon Black to LSR and to identify properties. As a result of the compression test, the elastic modulus tended to increase as carbon black was added. When the swelling test and the compression set test were conducted, the swelling rate tended to decrease as the content of carbon black increased, and the compression set tended to increase. In addition, DSC measurements showed that the total amount of reaction heat increased slightly as the carbon black content increased. It is considered that carbon black was involved in the crosslinking of LSR to increase the crosslinking density and have a positive effect on oil resistance reinforcement.

A study on deformation of LSR injection moldings having the runners with same flow distance (동일 유동거리 런너를 가진 LSR 성형품의 변형에 관한 연구)

  • Park, Jeong-Yeon;Yoon, Gil-Sang;Lee, Jeong-Won;Choi, Jong Myeong
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.60-63
    • /
    • 2013
  • Recently, Silicone that one of the thermo-sets is used to making optical products such as LED lenses because of excellent thermal properties. LED lenses are required to keep the precise dimensions, so they must be molded to have the minimum deformation. Thermo-sets have the expansion characteristic on the part of thermal property, it is important to optimize the cure condition so that the deformation of the part become minimum. In this study, to investigate the relationship between the shrinkage by the curing and expansion by the thermal properties of the resin, reactive injection experiment was performed by setting the variables such as mold setting temperature, cure time. As a result, it was confirmed that there was a interval while the thermal properties were transferred to more active during the cure process. It is expected to help in determining the reactive injection molding conditions of the thermo-set parts as well as LED lens in order to reduce the amount of deformation.

  • PDF

Effects of Variation in Process Parameters on Cavity Pressure and Mechanical Strength of Molded Parts in LSR Injection Molding (LSR 사출성형의 공정조건 변화가 캐비티 압력 및 성형품의 기계적 강도에 미치는 영향)

  • Park, Hyung Pil;Cha, Baeg Soon;Lee, Jeong Won;Ko, Young Bae;Kim, Sang Gweon;Jung, Tae Sung;Kim, Dong Han;Rhee, Byung Ohk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.206-212
    • /
    • 2014
  • Liquid silicone rubber (LSR) has been widely used in automotive, electrical, and medical components. Thus, research on the use of LSR in the injection molding process is required to obtain high-quality and high-performance products. In this study, a mold was fabricated to examine the effects of the process parameters on the molding and mechanical properties of LSR parts. A computer-aided engineering analysis was used to optimize the air vent depth and curing temperature to decrease the flash at the air vents caused by the low viscosity of LSR. Temperature and pressure sensors were mounted in the mold to determine the effects of the process parameters on the temperature and pressure in the cavity. The tensile strength of the LSR parts was also examined in relation to the process parameters.