• Title/Summary/Keyword: Silicon thin

Search Result 1,697, Processing Time 0.031 seconds

Fabrication of Diamoud Thin Films using RF Plasma (RF 플라즈마를 이용한 다이아몬드 박막의 제조)

  • 신재균;현준원
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.165-170
    • /
    • 1998
  • Deposition of diamond on silicon substrates has been performed by RF HPCVD (Helicon Plasma Chemical Vapor Deposition) from methane-hydrogen gas mixture. Growth properties and deposition condition conditions have been studies as functions of substrate temperature ($750^{\circ}C$~$850^{\circ}C$). Si p-type (100) wafers were used as a substrate. The chharecterizations of the gaind thin films by SEM, AFM and Raman seattring are diamond crystallites which include disordered graphit.

  • PDF

Thermal conductivity measurement of thin metallic films using radiation heat exchange method (Radiation heat exchange 방법을 이용한 금속박막의 열전도도 측정)

  • Ryu, Sang;Kim, Yeong-Man;Jeong, U-Nam
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.111-113
    • /
    • 2007
  • Thermal conductivities of copper thin films on silicon wafer was obtained from temperature distribution on the surface of wafer measured by radiation thermometry, when sample was heated with constant temperature ate the both ends in a vacuum and dissipate heat by radiation heat transfer into an environment.

  • PDF

R&D activities of a-Si:H thin film solar cells by LG Electronics

  • Lee, Don-Hui
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.19-19
    • /
    • 2007
  • Recently, we have developed p-i-n hydrogenated amorphous silicon (a-Si:H) single junction (SJ) thin film solar cells with RF (13,56MHz) plasma enhanced chemical vapor deposition (PECVD) systems, and also successfully fabricated the mini-modules (>300$cm^2$), using laser scribing technique to form an integrated series connection, The efficiency of a mini-module was 7.4% (Area=305$cm^2$, $I_{SC}$=0.25A, $V_{OC}$=14.74V, FF=62%).

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF

The Characteristic of Formation CoSi2/Si Thin Film by the RF-Sputtering Method (RF-Sputtering법에 의한 CoSi2/Si 박막 형성에 관한 특성)

  • Cho, Geum-Bae;Lee, Kang-Yoen;Choi, Youn-Ok;Kim, Nam-Oh;Jeong, Byeong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1255-1258
    • /
    • 2010
  • In this paper, the $CoSi_2$ thin films with thicknesses of about $5{\mu}m$ were deposited on n-type silicon (111) substrates by RF magnetron sputtering method using a $CoSi_2$ target (99.99%). The flow rate of argon of 50 sccm, substrate temperature of $100^{\circ}C$, RF power of 60 watts, deposition time of 30 minutes, and the vacuum of $1\times10^{-6}$ Torr. The annealing treatments of the $CoSi_2$ thin film were performed from 500, 700 and $900^{\circ}C$ for 1h in air ambient by an electric furnace. In order to investigate the $CoSi_2$ thin film X-ray diffraction patterns were measured using the X-ray diffractometer (XRD). The structure of the thin films were investigated by using scanning the electron microscope (SEM) were used for review. The surface morphology of the thin films was measured with a atomic force microscopy (AFM). Temperature dependence of sheet resistivity and property of Hall effect was measured in the $CoSi_2$ thin film.

Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells

  • Dzhafarov, Tayyar D.;Pashaev, Arif M.;Tagiev, Bahadur G.;Aslanov, Shakir S.;Ragimov, Shirin H.;Aliev, Akper A.
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.133-141
    • /
    • 2015
  • Influence of Ag nanoparticles on optical and photovoltaic properties of, silicon substrates, silicon solar cells and glass have been investigated. Silver nanoparticles have been fabricated by evaporation of thin Ag layers followed by the thermal annealing. The surface plasmon resonance peak was observed in the absorbance spectrum at 470 nm of glass with deposited silver nanoparticles. It is demonstrated that deposition of silver nanoparticles on silicon substrates was accompanied with a significant decrease in reflectance at the wavelength 360-1100 nm and increase of the absorption at wavelengths close to the band gap for Si substrates. We studied influence of Ag nanoparticles on photovoltaic characteristics of silicon solar cells without and with common use antireflection coating (ARC). It is shown that silver nanoparticles deposited onto the front surface of the solar cells without ARC led to increase in the photocurrent density by 39% comparing to cells without Ag nanoparticles. Contrary to this, solar cells with Ag nanoparticles deposited on front surface with ARC discovered decrease in photocurrent density. The improved performance of investigated cells was attributed to Ag-plasmonic excitations that reduce the reflectance from the silicon surface and ultimately leads to the enhanced light absorption in the cell. This study showed possibility of application of Ag nanoparticles for the improvement of the conversion efficiency of waferbased silicon solar cells instead of usual ARC.

Optimization of Electrochemical Etching Parameters in Porous Silicon Layer Transfer Process for Thin Film Solar Cell (초박형 태양전지 제작에 Porous Silicon Layer Transfer기술 적용을 위한 전기화학적 실리콘 에칭 조건 최적화에 관한 연구)

  • Lee, Ju-Young;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • Fabrication of porous silicon(PS) double layer by electrochemical etching is the first step in process of ultrathin solar cell using PS layer transfer process. The porosity of the porous silicon layer can be controlled by regulating the formation parameters such as current density and HF concentration. PS layer is fabricated by electrochemical etching in a chemical mixture of HF and ethanol. For electrochemical etching, highly boron doped (100) oriented monocrystalline Si substrates was used. Ths resistivity of silicon is $0.01-0.02\;{\Omega}{\cdot}cm$. The solution composition for electrochemical etching was HF (40%) : $C_2H_5OH$(99 %) : $H_2O$ = 1 : 1 : 2 (by volume). In order to fabricate porous silicon double layer, current density was switched. By switching current density from low to high level, a high-porosity layer was fabricated beneath a low-porosity layer. Etching time affects only the depth of porous silicon layer.

The efficiency charateristics of intrinsic layer thickness dependence for amorphous silicon single junction solar cells (Intrinsic layer 두께 가변에 따른 단일접합 비정질 박막 태양전지의 효율 특성 변화)

  • Yoon, Ki-Chan;Kim, Young-Kook;Heo, Jong-Kyu;Choi, Hyung-Wook;Yi, Young-Suk;Yi, Jun-Sin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.80-82
    • /
    • 2009
  • The dependence of the efficiency characteristics of hydrogenated amorphous silicon single junction solar cells on the various intrinsic layer thickness has been investigate in the glass/$SnO_2$:F/p,i,n a-Si:H/Al type of amorphous silicon solar cells by cluster PECVD system. The open circuit voltage, short circuit current, fill factor and conversion efficiency have been measured under AM 1.5 condition. The result of the cell performance was improved about 8.2% due to an increase in the short circuit current.

  • PDF