• Title/Summary/Keyword: Silicon quantum dots

Search Result 31, Processing Time 0.024 seconds

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • Man, Min-Tan;Lee, Hong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Enhancement in solar cell efficiency by luminescent down-shifting layers

  • Ahmed, Hind A.;Walshe, James;Kennedy, Manus;Confrey, Thomas;Doran, John;McCormack, Sarah.J.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.117-126
    • /
    • 2013
  • In this paper, core-shell semiconductor quantum dots (QDs) CdSeS/ZnS with emission at 490 nm and 450 nm were investigated for their use in luminescent down-shifting (LDS) layers. Luminescent quantum yield (LQY) of the QDs measurements in solution proposed that they were suitable candidates for inclusion in LDS layers. QDs were encapsulated in poly(methyl,methacrylate) (PMMA) polymer matrix and films were fabricated of $134{\pm}0.05$ microns. Selections of organic dyes from BASF Lumogen F range were also investigated for their use as LDS layers; Violet 570 and Yellow 083. The addition of LDS layers containing Violet 570 dye demonstrated a unity LQY when encapsulated within a PMMA matrix. A PV device of an LDS layer of Lumogen Violet 570 deposited on top of a crystalline silicon cell was fabricated where it was demonstrated to increase the efficiency of the cell by 34.5% relative.

Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering (실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

Study on the Silicon Nano-needle Structure for Nano floating Gate Memory Application (나노 부유 게이트 메모리 소자 응용을 위한 실리콘 나노-바늘 구조에 관한 연구)

  • Jung, Sung-Wook;Yoo, Jin-Su;Kim, Young-Kuk;Kim, Kyung-Hae;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1069-1074
    • /
    • 2005
  • In this work, nano-needle structures ate formed to solve problem, related to low density of quantum dots for nano floating gate memory. Such structures ate fabricated and electrical properties' of MIS devices fabricated on the nano-structures are studied. Nano floating gate memory based on quantum dot technologies Is a promising candidate for future non-volatile memory devices. Nano-structure is fabricated by reactive ion etching using $SF_6$ and $O_2$ gases in parallel RF plasma reactor. Surface morphology was investigated after etching using scanning electron microscopy Uniform and packed deep nano-needle structure is established under optimized condition. Photoluminescence and capacitance-voltage characteristics were measured in $Al/SiO_2/Si$ with nano-needle structure of silicon. we have demonstrated that the nano-needle structure can be applicable to non-volatile memory device with increased charge storage capacity over planar structures.

Applications of XPS and SIMS for the development of Si quantum dot solar cell

  • Kim, Gyeong-Jung;Hong, Seung-Hwi;Kim, Yong-Seong;Lee, U;Kim, Yeong-Heon;Seo, Se-Yeong;Jang, Jong-Sik;Sin, Dong-Hui;Choe, Seok-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.297-297
    • /
    • 2010
  • Precise control of the position and density of doping elements at the nanoscale is becoming a central issue for realizing state-of-the-art silicon-based optoelectronic devices. As dimensions are scaled down to take benefits from the quantum confinement effect, however, the presence of interfaces and the nature of materials adjacent to silicon turn out to be important and govern the physical properties. Utilization of visible light is a promising method to overcome the efficiency limit of the crystalline Si solar cells. Si quantum dots (QDs) have been proposed as an emission source of visible light, which is based on the quantum confinement effect. Light emission in the visible wavelength has been reported by controlling the size and density of Si QDs embedded within various types of insulating matrix. For the realization of all-Si QD solar cells with homojunctions, it is prerequisite not only to optimize the impurity doping for both p- and n-type Si QDs, but also to construct p-n homojunctions between them. In this study, XPS and SIMS were used for the development of p-type and n-type Si quantum dot solar cells. The stoichiometry of SiOx layers were controlled by in-situ XPS analysis and the concentration of B and P by SIMS for the activated doping in Si nano structures. Especially, it has been experimentally evidenced that boron atoms in silicon nanostructures confined in SiO2 matrix can segregate into the Si/$SiO_2$ interfaces and the Si bulk forming a distinct bimodal spatial distribution. By performing quantitative analysis and theoretical modelling, it has been found that boron incorporated into the four-fold Si crystal lattice can have electrical activity. Based on these findings, p-type Si quantum dot solar cell with the energy-conversion efficiency of 10.2% was realized from a [B-doped $SiO_{1.2}$(2 nm)/$SiO_2(2\;nm)]^{25}$ superlattice film with a B doping level of $4.0{\times}10^{20}\;atoms/cm^2$.

  • PDF

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • Lee, Gyeong-Dong;Park, Myeong-Jin;Kim, Do-Yeon;Kim, Su-Min;Gang, Byeong-Jun;Kim, Seong-Tak;Kim, Hyeon-Ho;Lee, Hae-Seok;Gang, Yun-Muk;Yun, Seok-Gu;Hong, Byeong-Hui;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

Light-emitting mechanism varying in Si-rich-SiNx controlled by film's composition

  • Torchynska, Tetyana V.;Vega-Macotela, Leonardo G.;Khomenkova, Larysa;Slaoui, Abdelilah
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.261-279
    • /
    • 2017
  • Spectroscopic investigation of Si quantum dots (Si-QDs) embedded in silicon nitride was performed over a broad stoichiometry range to optimize light emission. Plasma-enhanced chemical vapor deposition was used to grow the $SiN_x$ films on Si (001) substrates. The film composition was controlled via the flow ratio of silane ($SiH_4$) and ammonia ($NH_3$) in the range of R = 0.45-1.0 allowed to vary the Si excess in the range of 21-62 at.%. The films were submitted to annealing at $1100^{\circ}C$ for 30 min in nitrogen to form the Si-QDs. The properties of as-deposited and annealed films were investigated using spectroscopic ellipsometry, Fourier transform infrared spectroscopy, Raman scattering and photoluminescence (PL) methods. Si-QDs were detected in $SiN_x$ films demonstrating the increase of sizes with Si excess. The residual amorphous Si clusters were found to be present in the films grown with Si excess higher than 50 at.%. Multi-component PL spectra at 300 K in the range of 1.5-3.5 eV were detected and nonmonotonous varying total PL peak versus Si excess was revealed. To identify the different PL components, the temperature dependence of PL spectra was investigated in the range of 20-300 K. The analysis allowed concluding that the "blue-orange" emission is due to the radiative defects in a $SiN_x$ matrix, whereas the "red" and "infrared" PL bands are caused by the exciton recombination in crystalline Si-QDs and amorphous Si clusters. The nature of radiative and no radiative defects in $SiN_x$ films is discussed. The ways to control the dominant PL emission mechanisms are proposed.

Fabrication and property of silica nanospheres via rice-husk (왕겨를 통한 실리카 나노스페어의 제작과 특성)

  • Im, Yu-Bin;Kwk, Do-Hwan;Wahab, Rizwan;Lee, Hyun-Choel;Kim, Young-Soon;Yang, O-Bong;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.619-619
    • /
    • 2009
  • Recently, silica nanostructures are widely used in various applicationary areas such as chemical sensors, biosensors, nano-fillers, markers, catalysts, and as a substrate for quantum dots etc, because of their excellent physical, chemical and optical properties. Additionally, these days, semiconductor silica and silicon with high purity is a key challenge because of their metallurgical grade silicon (MG-Si) exhibit purity of about 99% produced by an arc discharge method with high cast. Tremendous efforts are being paid towards this direction to reduce the cast of high purity silicon for generation of photovoltaic power as a solar cell. In this direction, which contains a small amount of impurities, which can be further purified by acid leaching process. In this regard, initially the low cast rice-husk was cultivated from local rice field and washed well with high purity distilled water and were treated with acid leaching process (1:10 HCl and $H_2O$) to remove the atmospheric dirt and impurity. The acid treated rice-husk was again washed with distilled water and dried in an oven at $60^{\circ}C$. The dried rice-husk was further annealed at different temperatures (620 and $900^{\circ}C$) for the formation of silica nanospheres. The confirmation of silica was observed by the X-ray diffraction pattern and X-ray photoelectron spectroscopy. The morphology of obtained nanostructures were analyzed via Field-emission scanning electron microscope(FE-SEM) and Transmission electron microscopy(TEM) and it reveals that the size of each nanosphares is about 50-60nm. Using the Inductively coupled plasma mass spectrometry(ICP-MS), Silica was analyzed for the amount of impurities.

  • PDF