• Title/Summary/Keyword: Silicon pn Diode

Search Result 10, Processing Time 0.024 seconds

Fabrication and Properties of pn Diodes with Antimony-doped n-type Si Thin Film Structures on p-type Si (100) Substrates (p형 Si(100) 기판 상에 안티몬 도핑된 n형 Si박막 구조를 갖는 pn 다이오드 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.39-43
    • /
    • 2017
  • It was confirmed that the silicon thin films fabricated on the p-Si (100) substrates by using DIPAS (DiIsoPropylAminoSilane) and TDMA-Sb (Tris-DiMethylAminoAntimony) sources by RPCVD method were amorphous and n-type silicon. The fabricated amorphous n-type silicon films had electron carrier concentrations and electron mobilities ranged from $6.83{\times}10^{18}cm^{-3}$ to $1.27{\times}10^{19}cm^{-3}$ and from 62 to $89cm^2/V{\cdot}s$, respectively. The ideality factor of the pn junction diode fabricated on the p-Si (100) substrate was about 1.19 and the efficiency of the fabricated pn solar cell was 10.87%.

  • PDF

Comparison of turn-on/turn-off transient in Electron Irradiated and Proton Irradiated Silicon pn diode (전자와 양성자를 조사한 PN 다이오드의 turn-on/turn-off transient 특성 비교)

  • Lee, Ho-Sung;Lee, Jun-Ho;Park, Jun;Jo, Jung-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1947-1949
    • /
    • 1999
  • Carrier lifetime in silicon power devices caused switching delay and excessive power loss at high frequency switching. We studied transient turn-on/turn-off transient characteristics of electron irradiated and proton irradiated silicon pn junction diodes. Both the electron and proton irradiation of power devices have already become a widely used practice to reduce minority carrier lifetime locally[1]. The sample is n+p junction diode, made by ion implantation on a $20\Omega.cm$ p-type wafer. We investigated turn-on/turn-off transient & breakdown voltage characteristics by digital oscilloscope. Our data show that proton irradiated samples show better performance than electron irradiated samples.

  • PDF

Characterization of Silicon Structures with pn-junctions Fabricated by Modified Direct Bonding Technique with Simultaneous Dopant Diffusion (불순물 확산을 동시에 수행하는 수정된 직접접합방법으로 제작된 pn 접합 실리콘소자의 특성)

  • Kim, Sang-Cheol;Kim, Eun-dong;Kim, Nam-kyun;Bahng, Wook;Kostina, L.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.828-831
    • /
    • 2001
  • A simple and versatile method of manufacturing semiconductor devices with pn-junctions used the silicon direct bonding technology with simultaneous impurity diffusion is suggested . Formation of p- or n- type layers was tried during the bonding procedure by attaching two wafers in the aqueous solutions of Al(NO$_3$)$_3$, Ga(NO$_3$)$_3$, HBO$_3$, or H$_3$PO$_4$. An essential improvement of bonding interface structural quality was detected and a model for the explanation is suggested. Diode, Dynistor, and BGGTO structures were fabricated and examined. Their switching characteristics are presented.

  • PDF

A Novel Ultraviolet Sensor using Photoluminescent Porous Silicon (광 루미네슨스 다공질 실리콘을 이용한 새로운 자외선 센서)

  • Min, Nam-Gi;Go, Ju-Yeol;Gang, Cheol-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.444-449
    • /
    • 2001
  • In this paper, a novel ultraviolet sensor is presented based on a photoluminescent porous silicon. Porous silicon layer was formed by chemical etching of surface of pn junction in a $HF(48%)-HNO_3(60%)-H_20$ solution. Incident ultraviolet(UV) light is converted to visible light by photoluminescent porous silicon layer, and then this visible light generates electron-hole pairs in the pn junction, which produces a photocurrent flow through the device. In order to maximize detection efficiency, the peak sensitivity wavelength of the pn junction diode was matched with the peak wavelength of Photoluminescence from porous silicon layer. The porous silicon ultraviolet sensor showed a large output current as UV intensity increases and but very low sensitivity to visible light. The detection sensitivity of porous silicon sensor was calculated as 2.91mA/mW. These results are expected to open up a possibility that the present porous silicon sensor can be used for detecting UV light in a visible background, compared to silicon UV detectors which have an undesirable response to visible light.

  • PDF

The Electrical and Transient Thermal characteristics of TVS diode for Surge Absorber (TVS 다이오드의 전기적 특성 및 과도 열방출 특성 해석)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.208-212
    • /
    • 2003
  • Silicon transient voltage suppressors (TVSs) are clamping devices that limit voltage spikes by low impedance avalanche breakdown of a rugged silicon PN junction. They are used to protect sensitive components from electrical overstress such as that caused by induces lightning, inductive load switching and electrostatic discharge. In this paper, we present static and dynamic characteristics of TVS diode using thermal analysis simulation software. And also, it is presented that the thermal dissipation characteristics of TVS diode in the transient state.

  • PDF

Improved Rs Monitoring for Robust Process Control of High Energy Well Implants

  • Kim, J.H.;Kim, S.;Ra, G.J.;Reece, R.N.;Bae, S.Y.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper we describe a robust method of improving precision in monitoring high energy ion implantation processes. Ion implant energy accuracy was measured in the device manufacturing process using an unpatterned implanted layer on an intrinsic p-type silicon wafer. To increase Rs sensitivity to energy at the well implant process, a PN junction structure was formed by P-well and deep N-well implants into the p-type Si wafer. It was observed that the depletion layer formed by the PN junction was very sensitive to energy variation of the well implant. Conclusively, it can be recommended to monitor well implant processes using the Rs measurement method described herein, i.e., a PN junction diode structure since it shows excellent Rs sensitivity to variation caused by energy difference at the well implant step.

  • PDF

Application of Commercial PIN Photodiodes to develope Gamma-Ray Dosimeters (감마선 선량계를 개발하기 위한 상용 PIN 포토 다이오드의 응용)

  • Jeong, Dong-Hwa;Kim, Sung-Duck
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.274-280
    • /
    • 2000
  • This paper deals with an experimental study to apply commercial semiconductors to measure radiation dose rate for gamma ray. Since the low cost, small size, high efficiency and ruggedness of silicon photodiodes make them attractive photodetectors, they coulde be effectively used in measuring any radiation such as gamma ray. Most PN photodiodes show that the reverse current increases when the light is increased. Therefore the depletion region of them have influence on the reverse current, so we choose silicon PIN photodiodes with large depletion region. In order to detect radiation dose rate and then, to apply in developing any gamma ray dosimeter, some examinations and experiments were performed to PIN photodiodes in this work. Two kinds of PIN photodiodes, such as NEC's PH302 and SIEMENS's BPW34, were tested in a Co-60 gamma irradiation facility with a semiconductor parameter analyzer. As a result, we found that such PIN photodiodes present good linearity in diode current characteristics with dose rate. Therefore silicon PIN photodiodes could be suitably used in designing gamma ray dosimeters.

  • PDF

Electrical Characteristics of 4H-SiC Junction Barrier Schottky Diode (4H-SiC JBS Diode의 전기적 특성 분석)

  • Lee, Young-Jae;Cho, Seulki;Seo, Ji-Ho;Min, Seong-Ji;An, Jae-In;Oh, Jong-Min;Koo, Sang-Mo;Lee, Deaseok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.367-371
    • /
    • 2018
  • 1,200 V class junction barrier schottky (JBS) diodes and schottky barrier diodes (SBD) were simultaneously fabricated on the same 4H-SiC wafer. The resulting diodes were characterized at temperatures from room temperature to 473 K and subsequently compared in terms of their respective I-V characteristics. The parameters deduced from the observed I-V measurements, including ideality factor and series resistance, indicate that, as the temperature increases, the threshold voltage decreases whereas the ideality factor and barrier height increase. As JBS diodes have both Schottky and PN junction structures, the proper depletion layer thickness, $R_{on}$, and electron mobility values must be determined in order to produce diodes with an effective barrier height. The comparison results showed that the JBS diodes exhibit a larger effective barrier height compared to the SBDs.

Electrical Characteristics Analysis Depending on the Portion of MPS Diode Fabricated Based on 4H-SiC in Schottky Region (4H-SiC 기반으로 제작된 MPS Diode의 Schottky 영역 비율에 따른 전기적 특성 분석)

  • Lee, Hyung-Jin;Kang, Ye-Hwan;Jung, Seung-Woo;Lee, Geon-Hee;Byun, Dong-Wook;Shin, Myeong-Choel;Yang, Chang-Heon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.241-245
    • /
    • 2022
  • In this study, we measured and comparatively analyzed the characteristics of MPS (Merged Pin Schottky) diodes in 4H-SiC by changing the areal ratio between the Schottky and PN junction region. Increasing the temperature from 298 K to 473 K resulted in the threshold voltage shifting from 0.8 V to 0.5 V. A wider Schottky region indicates a lower on-resistance and a faster turn-on. The effective barrier height was smaller for a wider Schottky region. Additionally, the depletion layer became smaller under the influence of the reduced effective barrier height. The wider Schottky region resulted in the ideality factor being reduced from 1.37 to 1.01, which is closer to an ideal device. The leakage saturation current increased with the widening Schottky region, resulting in a 1.38 times to 2.09 times larger leakage current.

Comparison of Electron Beam Dosimetries by Means of Several Kinds of Dosimeters (수종의 측정기에 의한 전자선의 선량 측정의 비교)

  • Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.93-100
    • /
    • 1989
  • Several combinations of measuring devices and phantoms were studied to measure electron beams. Silicon Pmt junction diode was used to find the dependence of depth dose profile on field size on axis of electron beam Depths of 50, 80 and $90\%$ doses increased with the field size for small fields. For some larger fields, they were nearly constant. The smallest of field sizes over which the parameters were constant was enlarged with increase of the energy of electron beams. Depth dose distributions on axis of electron beam of $10\times10cm^2$ field were studied with several combinations of measuring devices and phantoms. Cylindrical ion chamber could not be used for measurement of surface dose, and was not convenient for measurement of near surface region of 6MeV electron. With some exceptions, parameters agreed well with those studied by different devices and phantoms. Surface dose in some energies showed $4\%$ difference between maximum and minimum. For 18MeV, depths of 80 and $90\%$ doses were considerably shallower by film than by others. Parallel-plate ion chamber with polystyrene phamtom and silicon PN junction would be recommended for measurement of central axis depth dose of electron beams with considerably large field size. It is desirable not to use cylindrical ion chamber for the purpose of measurement of surface dose or near surface region for lower energy electron beam. It is questionable that film would be recommended for measurement of dose distribution of electron with high energy like as 18MeV.

  • PDF