• 제목/요약/키워드: Silicon dry etching

검색결과 71건 처리시간 0.027초

Dry Etching에 의해 제작된 실리콘 미세 구조물 (Silicon microstructure prepared by a dry etching)

  • 홍석민;임창덕;조정희;안일신;김옥경
    • 한국진공학회지
    • /
    • 제6권3호
    • /
    • pp.242-248
    • /
    • 1997
  • 기존의 다공질 실리콘 제작 방법인 chemical etching 방법을 병행하면서 새로운 제 작 방법으로서 dry etching 기술을 적용하여 다공질 실리콘을 제작하였다. 또한, 비교를 위 해 E-beam lithography 기술로 실리콘 구조물을 제작하였는데 이 경우 기술상 문제로 약 0.3$\mu\textrm{m}$의 직경을 가진 구조물이 최소의 크기였다. 따라서 새로운 방법으로 4인치 wafer위에 mask 역할을 해주는 다이아몬드 분말을 spin coater로 입힌 후 Reactive Ion Etching(RIE) 방법으로 미세구조의 다공질 실리콘을 제작하였다. 다양한 조건으로 제작된 sample들의 morphology를 SEM과 AFM 등을 이용하여 분석하였고 이 morphology에 대응하는 PL스펙 트럼을 측정하였다. 그 결과, 다이아몬드 분말을 이용한 dry etching방법으로 제작된 다공질 실리콘의 PL peak의 위치가 chemical etching 방법의 다공질 실리콘의 PL peak 위치인 760nm에 비해 높은 에너지인 590nm로 나타났다.

  • PDF

건식식각 기술 이용한 실리콘 압력센서의 특성 (Characteristics silicon pressure sensor using dry etching technology)

  • 우동균;이경일;김흥락;서호철;이영태
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.137-141
    • /
    • 2010
  • In this paper, we fabricated silicon piezoresistive pressure sensor with dry etching technology which used Deep-RIE and etching delay technology which used SOI(silicon-on-insulator) wafer. We improved pressure sensor offset and its temperature dependence by removing oxidation layer of SOI wafer which was used for dry etching delay layer. Sensitivity of the fabricated pressure sensor was about 0.56 mV/V${\cdot}$kPa at 10 kPa full-scale, and nonlinearity of the fabricated pressure sensor was less than 2 %F.S. The zero off-set change rate was less than 0.6 %F.S.

HDP를 이용한 실리콘 단결정 Deep Dry Etching에 관한 특성 (Characterization of Deep Dry Etching of Silicon Single Crystal by HDP)

  • 박우정;김장현;김용탁;백형기;서수정;윤대호
    • 한국세라믹학회지
    • /
    • 제39권6호
    • /
    • pp.570-575
    • /
    • 2002
  • 현재 전기 . 전자 기술의 추세는 소형화를 비롯하여 집적화, 저전력화, 저가격화의 장점을 가진 MEMS(Micro Electro Mechanical Systems) device의 개발에 주력하고 있으며, 이를 위해서는 고종횡비와 높은 식각 속도를 가진 HDP(High Density Plasma) etching 기술 개발이 필수적이라 할 수 있다. 이를 위하여 우리는 Inductively Coupled Plasma(ICP) 장비를 이용하여 각 공정 변수에 의한 실리콘 deep trench식각 반응을 연구하였다. 실험 공정 변수인 platen power, etch/passivation cycle time에서 etching 단계 시간에 따른 변화와 SF$_{6}$:C$_4$F$_{8}$ 가스유량을 변화시켜 연구하였으며 또한 이들의 profile, scallops, 식각 속도, 균일도, 선택비도 관찰하였다.

태양전지 제작을 위한 Hollow Cathode Plasma System의 실리콘 건식식각에 관한 연구 (A study on Silicon dry Etching for Solar Cell Fabrication Using Hollow Cathode Plasma System)

  • 유진수;;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권2호
    • /
    • pp.62-66
    • /
    • 2004
  • This paper investigated the characteristics of a newly developed high density hollow cathode plasma (HCP) system and its application for the etching of silicon wafers. We used SF$_{6}$ and $O_2$ gases in the HCP dry etch process. Silicon etch rate of $0.5\mu\textrm{m}$/min was achieved with $SF_6$$O_2$plasma conditions having a total gas pressure of 50mTorr, and RF power of 100 W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. The results of this experiment can be used for various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications.s.

ICP-RIE를 이용한 저압용 실리콘 압력센서 제작 (Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE)

  • 이영태
    • 센서학회지
    • /
    • 제16권2호
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.

P-형 실리콘에서 마이크로 와이어 형성에 미치는 마스크 패턴의 영향 (The Effect of Mask Patterns on Microwire Formation in p-type Silicon)

  • 김재현;김강필;류홍근;우성호;서홍석;이정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.418-418
    • /
    • 2008
  • The electrochemical etching of silicon in HF-based solutions is known to form various types of porous structures. Porous structures are generally classified into three categories according to pore sizes: micropore (below 2 nm in size), mesopore (2 ~ 50 nm), and macropore (above 50 nm). Recently, the formation of macropores has attracted increasing interest because of their promising characteristics for an wide scope of applications such as microelectromechanical systems (MEMS), chemical sensors, biotechnology, photonic crystals, and photovoltaic application. One of the promising applications of macropores is in the field of MEMS. Anisotropic etching is essential step for fabrication of MEMS. Conventional wet etching has advantages such as low processing cost and high throughput, but it is unsuitable to fabricate high-aspect-ratio structures with vertical sidewalls due to its inherent etching characteristics along certain crystal orientations. Reactive ion dry etching is another technique of anisotropic etching. This has excellent ability to fabricate high-aspect-ratio structures with vertical sidewalls and high accuracy. However, its high processing cost is one of the bottlenecks for widely successful commercialization of MEMS. In contrast, by using electrochemical etching method together with pre-patterning by lithographic step, regular macropore arrays with very high-aspect-ratio up to 250 can be obtained. The formed macropores have very smooth surface and side, unlike deep reactive ion etching where surfaces are damaged and wavy. Especially, to make vertical microwire or nanowire arrays (aspect ratio = over 1:100) on silicon wafer with top-down photolithography, it is very difficult to fabricate them with conventional dry etching. The electrochemical etching is the most proper candidate to do it. The pillar structures are demonstrated for n-type silicon and the formation mechanism is well explained, while such a experimental results are few for p-type silicon. In this report, In order to understand the roles played by the kinds of etching solution and mask patterns in the formation of microwire arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, dimethyl sulfoxide (DMSO), iso-propanol, and mixtures of HF with water on the structure formation on monocrystalline p-type silicon with a resistivity with 10 ~ 20 $\Omega{\cdot}cm$. The different morphological results are presented according to mask patterns and etching solutions.

  • PDF

High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications

  • Lee, Joon-Hoi;Lee, Wook-Jae;Choi, Man-Sub;Yi, Joon-Sin
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.1-7
    • /
    • 2001
  • This paper investigates the characteristics of a newly developed high density hollow cathode plasma(HCP) system and its application for the etching of silicon wafers. We used $SF_6$ and $O_2$ gases in the HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}cm^{-3}$ at a discharge current of 20 rna, Silicon etch rate of 1.3 ${\mu}m$/min was achieved with $SF_6/O_2$ plasma conditions of total gas pressure of 50 mTorr, gas flow rate of 40 seem, and RF power of200W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. We obtained field emitter tips size of less than 0.1 ${\mu}m$ without any photomask step as well as with a conventional photolithography. Our experimental results can be applied to various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this research, we studied silicon etching properties by using the hollow cathode plasma system.

  • PDF

Fabrication of Metal Nanobridge Arrays using Sacrificial Silicon Nanowire

  • Lee, Kook-Nyung;Lee, Kyoung-Gun;Jung, Suk-Won;Lee, Min-Ho;Seong, Woo-Kyeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.396-400
    • /
    • 2012
  • Novel fabrication method of nanobridge array of various materials was proposed using suspended silicon nanowire array as a sacrificial template structure. Nanobridges of various materials can be simply fabricated by direct deposition with thermal evaporation on the top of prefabricated suspended silicon nanobridge arrays, which are used as a sacrificial structure. Since silicon nanowire can be easily removed by selective dry etching, nanobridge arrays of an intended material are finally obtained. In this paper, metal nanobridges of Ti/Au, around 50-200 nm in thickness and width, 5-20 ${\mu}m$ in length were fabricated to prove the advantages of the proposed nanowire or nanobridge fabrication method. The nanobridges of Ti/Au after complete removal of sacrificial silicon nanowire template were well-established and bending of nanobridge caused by the tensile stress was observed after silicon removing. Up to 50 nm and 10 ${\mu}m$ of silicon nanowire in diameter and length respectively was also very useful for nanowire templates.

레이저를 이용한 결정질 실리콘 태양전지의 Double Texturing 제조 및 특성 (Characteristics of Double Texturization by Laser and Reactive Ion Etching for Crystalline Silicon Solar Cell)

  • 권준영;한규민;최성진;송희은;유진수;유권종;김남수
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.649-653
    • /
    • 2010
  • In this paper, double texturization of multi crystalline silicon solar cells was studied with laser and reactive ion etching (RIE). In the case of multi crystalline silicon wafers, chemical etching has problems in producing a uniform surface texture. Thus various etching methods such as laser and dry texturization have been studied for multi crystalline silicon wafers. In this study, laser texturization with an Nd:$YVO_4$ green laser was performed first to get the proper hole spacing and $300{\mu}m$ was found to be the most proper value. Laser texturization on crystalline silicon wafers was followed by damage removal in acid solution and RIE to achieve double texturization. This study showed that double texturization on multi crystalline silicon wafers with laser firing and RIE resulted in lower reflectance, higher quantum yield and better efficiency than that process without RIE. However, RIE formed sharp structures on the silicon wafer surfaces, which resulted in 0.8% decrease of fill factor at solar cell characterization. While chemical etching makes it difficult to obtain a uniform surface texture for multi crystalline silicon solar cells, the process of double texturization with laser and RIE yields a uniform surface structure, diminished reflectance, and improved efficiency. This finding lays the foundation for the study of low-cost, high efficiency multi crystalline silicon solar cells.

Pseudo MOSFET을 이용한 Nano SOI 웨이퍼의 전기적 특성분석 (Electrical Characterization of Nano SOI Wafer by Pseudo MOSFET)

  • 배영호;김병길;권경욱
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1075-1079
    • /
    • 2005
  • The Pseudo MOSFET measurements technique has been used for the electrical characterization of the nano SOI wafer. Silicon islands for the Pseudo MOSFET measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo MOSFET were not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device were dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100 nm SOI was obtained by thinning the silicon film of standard thick SOI wafer. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching Process dependency is greater in the thinner SOI wafer.