• Title/Summary/Keyword: Silicon direct bonding

Search Result 73, Processing Time 0.029 seconds

Si Micromachining for MEMS-lR Sensor Application (결정의존성 식각/기판접합을 이용한 MEMS용 구조물의 제작)

  • 박흥우;주병권;박윤권;박정호;김철주;염상섭;서상의;오명환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.411-414
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PT layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PT layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PT layer of c-axial orientation rained thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PT layer were measured, too.

  • PDF

Low Temperature Bonding Process of Silicon and Glass using Spin-on Glass (Spin-on Glass를 이용한 실리콘과 유리의 저온 접합 공정)

  • Lee Jae-Hak;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.77-86
    • /
    • 2005
  • Low temperature bonding of the silicon and glass using the Spin-on Glass (SOG) has been conducted experimentally to figure out the effects of the SOG solution composition and process variables on bond strength using the Design of Experiment method. In order to achieve the high quality bond interface without rack, sufficient reaction time of the optimal SOG solution composition is needed along with proper pressure and annealing temperature. The shear strength under the optimal SOG solution composition and process condition was higher than that of conventional anodic bonding and similar to that of wafer direct bonding.

A study on Bubble-like Defects in Silicon Wafer Direct Bonding (실리콘 웨이퍼 직접 접합에서 기포형 접합 결합에 관한 연구)

  • Mun, Do-Min;Hong, Jin-Gyun;Yu, Hak-Do;Jeong, Hae-Do
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.159-163
    • /
    • 2001
  • The success of SDB (silicon wafer direct bonding) technology can be estabilished by bonding on the bonded interface with no defects and Preventing temperature dependent bubbles. In this research, we observed the behavior of the intrinsic bubbles by transmitting the infrared light and the increase of the bubble pressure was found. And, the $SiO_2$-$SiO_2$ bonded wafer was achieved, which generates no intrinsic bubbles in the annealing under the atmospheric pressure. The intrinsic bubbles in the $SiO_2$-$SiO_2$ bonded wafer were generated in the annealing in the ultra high vacuum. This experimental result shows the relation between the bubble growth and the pressure.

  • PDF

Effects of Wafer Cleaning and Heat Treatment in Glass/Silicon Wafer Direct Bonding (유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과)

  • 민홍석;주영창;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We have investigated the effects of various wafers cleaning on glass/Si bonding using 4 inch Pyrex glass wafers and 4 inch silicon wafers. The various wafer cleaning methods were examined; SPM(sulfuric-peroxide mixture, $H_2SO_4:H_2O_2$ = 4 : 1, $120^{\circ}C$), RCA(company name, $NH_4OH:H_2O_2:H_2O$ = 1 : 1 : 5, $80^{\circ}C$), and combinations of those. The best room temperature bonding result was achieved when wafers were cleaned by SPM followed by RCA cleaning. The minimum increase in surface roughness measured by AFM(atomic force microscope) confirmed such results. During successive heat treatments, the bonding strength was improved with increased annealing temperatures up to $400^{\circ}C$, but debonding was observed at $450^{\circ}C$. The difference in thermal expansion coefficients between glass and Si wafer led debonding. When annealed at fixed temperatures(300 and $400^{\circ}C$), bonding strength was enhanced until 28 hours, but then decreased for further anneal. To find the cause of decrease in bonding strength in excessively long annealing time, the ion distribution at Si surface was investigated using SIMS(secondary ion mass spectrometry). tons such as sodium, which had been existed only in glass before annealing, were found at Si surface for long annealed samples. Decrease in bonding strength can be caused by the diffused sodium ions to pass the glass/si interface. Therefore, maximum bonding strength can be achieved when the cleaning procedure and the ion concentrations at interface are optimized in glass/Si wafer direct bonding.

Si Micromachining for MEMS-IR Sensor Application (결정의존성 식각/기판접합을 이용한 MEMS용 구조물의 제작)

  • 박홍우;주병권;박윤권;박정호;김철주;염상섭;서상회;오명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.815-819
    • /
    • 1998
  • The silicon-nirtide membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PRO($PbTiO_3$ ) layer for a IR detection was coated on the membrane and its characteristics were measured. The a attack of PTO layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer were eliminated through the method of bonding/etching of silicon wafer. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by the PTO layer were measured, too.

  • PDF

Fabrication of Al2O3 SOI with direct bonding (직접 접합에 의한 Al2O3 SOI 구조 제작)

  • Kong, Dae-Young;Eun, Duk-Soo;Bae, Young-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.206-210
    • /
    • 2005
  • The SOI structure with buried alumina was fabricated by ALD followed by bonding and etchback process. The interface of alumina and silicon was analyzed by CV measurements and cross section was investigated by SEM analysis. The density of interface state of alumina and silicon was 2.5E11/$cm^{2}$-eV after high temperature annealing for wafer bonding. It was confirmed that the surface silicon layer was completely isolated from substrate by cross section SEM and AES depth profile. The device on this alumina SOI structure would have better thermal properties than that on conventional SOI due to higher thermal conductivity of alumina than that of silicon dioxide.

High Temperature Silicon Pressure Sensor of SDB Structure (SDB 구조의 고온용 실리콘 압력센서)

  • Park, Jae-Sung;Choi, Deuk-Sung;Kim, Mi-Mok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.305-310
    • /
    • 2013
  • In this paper, the pressure sensor usable in a high temperature, using a SDB(silicon-direct-bonding) wafer of Si/$SiO_2$/Si-sub structure was provided and studied the characteristic thereof. The pressure sensor produces a piezoresistor by using a single crystal silicon as a first layer of SDB wafer, to thus provide a prominent sensitivity, and dielectrically isolates the piezoresistor from a silicon substrate by using a silicon dioxide layer as a second layer thereof, to be thus usable even under the high temperature over $120^{\circ}C$ as a limited temperature of a general silicon sensor. The measured result for a pressure sensitivity of the pressure sensor has a characteristic of high sensitivity, and its tested result for an output of the sensor further has a very prominent linearity and hysteresis characteristic.

High Speed Direct Bonding of Silicon Wafer Using Atmospheric Pressure Plasma (상압 플라즈마를 이용한 고속 실리콘 웨이퍼 직접접합 공정)

  • Cha, Yong-Won;Park, Sang-Su;Shin, Ho-Jun;Kim, Yong Taek;Lee, Jung Hoon;Suh, Il Woong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.31-38
    • /
    • 2015
  • In order to achieve a high speed and high quality silicon wafer bonding, the room-temperature direct bonding using atmospheric pressure plasma and sprayed water vapor was developed. Effects of different plasma fabrication parameters, such as flow rate of $N_2$ gas, flow rate of CDA (clear dry air), gap between the plasma head and wafer surface, and plasma applied voltage, on plasma activation were investigated using the measurements of the contact angle. Influences of the annealing temperature and the annealing time on bonding strength were also investigated. The bonding strength of the bonded wafers was measured using a crack opening method. The optimized condition for the highest bonding strength was an annealing temperature of $400^{\circ}C$ and an annealing time of 2 hours. For the plasma activation conditions, the highest bonding strength was achieved at the plasma scan speed of 30 mm/sec and the number of plasma treatment of 4 times. After optimization of the plasma activation conditions and annealing conditions, the direct bonding of the silicon wafers was performed. The infrared transmission image and the cross sectional image of bonded interface indicated that there is no void and defects on the bonded wafers. The bonded wafer exhibited a bonding strength of average $2.3J/m^2$.

Etching-Bonding-Thin film deposition Process for MEMS-IR SENSOR Application (MEMS-IR SENSOR용 식각-접합-박막증착 기반공정)

  • Park, Yun-Kwon;Joo, Byeong-Kwon;Park, Heung-Woo;Park, Jung-Ho;Yom, S.S.;Suh, Sang-Hee;Oh, Myung-Hwan;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2501-2503
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PTO layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PTO layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PTO layer of c-axial orientation raised thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PTO layer were measured, too.

  • PDF

ANALYSIS OF THE EFFECT OF HYDROXYL GROUPS IN SILICON DIRECT BONDING USING FT-IR (규소 기판 접합에 있어서 FT-IR을 이용한 수산화기의 영향에 관한 해석)

  • Park, Se-Kwang;Kwon, Ki-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.74-80
    • /
    • 1994
  • Silicon direct bonding technology is very attractive for both silicon-on-insulator devices and sensor fabrication because of its thermal stress free structure and stability. The process of SDB includes hydration of silicon wafer and heat treatment in a wet oxidation furnace. After hydration process, hydroxyl groups of silicon wafer were analyzed by using Fourier transformation-infrared spectroscopy. In case of hydrophilic treatment using a ($H_{2}O_{2}\;:\;H_{2}SO_{4}$) solution, hydroxyl groups are observed in a broad band around the 3474 $cm^{-1}$ region. However, hydroxyl groups do not appear in case of diluted HF solution. The bonded wafer was etched by using tetramethylammonium hydroxide etchant. The surface of the self etch-stopped silicon dioxide is completely flat, so that it can be used as sensor applications such as pressure, flow and acceleration, etc..

  • PDF