• 제목/요약/키워드: Silicon chloride

검색결과 40건 처리시간 0.024초

사염화규소 누출사고지점 주변 식물에 대한 노출지표 평가 (Evaluation of Exposure Indicators for Plants by Silicon Tetrachloride Release)

  • 박재선;김지영;김명옥;박현우;정현미;최종우
    • 한국환경농학회지
    • /
    • 제36권4호
    • /
    • pp.288-292
    • /
    • 2017
  • BACKGROUND: Silicon tetrachloride reacts with moisture in the atmosphere to generate hydrogen chloride, which affects the environment. Since silicon tetrachloride and its by-products are dispersed in the atmosphere in a short time after the silicon tetrachloride release into the atmosphere, it is difficult to directly assess the extent of environmental impact. In the present study, the exposure test of silicon tetrachloride or hydrogen chloride was examined in order to establish the criterion of the range affected by the silicon tetrachloride release, and the actual crops in the area exposed to silicon tetrachloride leakage were analyzed. METHODS AND RESULTS: For the experiment of exposure to silicon tetrachloride or hydrogen chloride, the leaves of red-pepper and corn were used in glass sealed containers. In the actual accident area, 59 samples from 10 different kinds of crops were collected. The pretreatment of the sample was performed by freezing and grinding, and then extracted using distilled water. The pH and concentration of chloride ($Cl^-$) ion of the extracted solution were measured using pH meter and ion chromatograph, respectively. CONCLUSION: Exposure to silicon tetrachloride caused visible damage, increasing the concentration of chloride ion, and decreasing the pH as well as hydrochloric acid. In the actual crops of the affected area, the tendency was the same as the result of the laboratory test, and the range of influence could be estimated through the concentration of $Cl^-$ ion over 2,000 mg/kg, and the correlation evaluation between the concentration of $Cl^-$ and pH. Therefore, the concentration of $Cl^-$ ion and the correlation between $Cl^-$ and pH would be considered as the factors to estimate the influence range of silicon tetrachloride release.

Density Functional Theory Study of Silicon Chlorides for Atomic Layer Deposition of Silicon Nitride Thin Films

  • Yusup, Luchana L.;Woo, Sung-Joo;Park, Jae-Min;Lee, Won-Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.211.1-211.1
    • /
    • 2014
  • Recently, the scaling of conventional planar NAND flash devices is facing its limits by decreasing numbers of electron stored in the floating gate and increasing difficulties in patterning. Three-dimensional vertical NAND devices have been proposed to overcome these issues. Atomic layer deposition (ALD) is the most promising method to deposit charge trap layer of vertical NAND devices, SiN, with excellent quality due to not only its self-limiting growth characteristics but also low process temperature. ALD of silicon nitride were studied using NH3 and silicon chloride precursors, such as SiCl4[1], SiH2Cl2[2], Si2Cl6[3], and Si3Cl8. However, the reaction mechanism of ALD silicon nitride process was rarely reported. In the present study, we used density functional theory (DFT) method to calculate the reaction of silicon chloride precursors with a silicon nitride surface. DFT is a quantum mechanical modeling method to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. The bond dissociation energy of each precursor was calculated and compared with each other. The different reactivities of silicon chlorides precursors were discussed using the calculated results.

  • PDF

Methylchlorosilanes 합성촉매에 관한 연구 (A New Catalytic System for Methylchlorosilanes(MCS) Synthesis)

  • 조철군;한기도
    • 공업화학
    • /
    • 제8권5호
    • /
    • pp.804-810
    • /
    • 1997
  • 실리콘의 모노머로 사용되고 있는 MCS 합성촉매계에 관한 연구를 수행하였다. 기존 3원촉매계(Cu/Zn/Sn)에 조촉매 Cd를 추가시킨 4원촉매계(CuCl/$ZnCl_2$/Sn/Cd)는 원료 규소와 염화메틸로부터 MCS를 합성하는 촉매로서 성능이 3원촉매계 보다 우수하였다. 4원촉매계는 조성이 혼합촉매/규소=5/95, Zn/Cu=0.1, Sn/Cu=0.001, Cd/Cu=0.001가 되도록 구성하고, 슬러리상태에서 혼합한 후 활성화된 접촉물질을 제조하여 MCS 합성에 사용하였을 때, 규소소모율 92%에서 평균선택도 92%, 규소소모율 40%에서 반응속도는 175(g-MCS/hr.kg-Si)이었다.

  • PDF

Synthesis of Isopropyldichlorosilane by Direct Process

  • Lim, Weon-Cheol;Cho, Joo-Hyun;Han, Joon-Soo;Yoo, Bok-Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1661-1664
    • /
    • 2007
  • Direct reaction of elemental silicon with a gaseous mixture of isopropyl chloride (1) and hydrogen chloride in the presence of copper catalyst using a stirred bed reactor equipped with a spiral band agitator gave isopropyldichlorosilane having a Si-H bond (2a) as a major product and isopropyltrichlorosilane (2b) along with chlorosilanes, trichlorosilane and tetrachlorosilane. A process for production of 2a was maximized using the 1:0.5 mole ratio of 1 to HCl and smaller size of elemental silicon at a reaction temperature of 220 °C. When a reaction was carried out by feeding a gaseous mixture of 1 [12.9 g/h (0.164 mol/h)] and HCl [2.98 g/h (0.082 mol/h)] to a contact mixture of elemental silicon (360 g) and copper (40 g) under the optimum condition for 45 h, 2a among volatile products kept up about 82 mol % until 35 h and then slowly decreased down 68 mol % in 45 h reaction. Finally 2a was obtained in 38% isolated yield (based on 1 used) with an 85% consumption of elemental silicon in a 45 h reaction. In addition to 2a, 2b was obtained as minor product along with chlorosilanes, trichlorosilane, and tetrachlorosilane. The decomposition of 1 was suppressed and the production of 2a improved by adding HCl to 1.

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • 이창엽;한준수;유복렬;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권10호
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성 (The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition)

  • 김도영
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.320-323
    • /
    • 2018
  • SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

유방전용감마카메라에서 유방 보형물이 영상에 미치는 영향에 관한 고찰 (A Study on Effect of the Image Applying to Breast Implants in Breast Specific Gamma Imaging)

  • 이주영;이태수;박훈희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권1호
    • /
    • pp.33-38
    • /
    • 2018
  • There are limits to check the lesion as inserting a breast implant patients. So the application of BSGI based on Nuclear Medicine examination has increased. In this study, therefore we confirmed the effect of the image applying to breast implants in Breast Specific Gamma Imaging. We utilized Dilon 6800 BSGI scanner and developed the phantom. The self-development phantom was a rectangular shape of $230{\times}190{\times}80mm$ size and had 5 spheres which consisted of diameters of 10, 13, 17, 22, 28 mm in central part. We injected $^{99m}TcO_4$ into the self-development phantom in the proportion of four to one and made each additional phantom filled with 0.9 % sodium chloride, silicon and paraffin. Each additional phantom was placed between detector and self-development phantom. Each image was acquired five times depending on the type and thickness of the additional phantom. Statistical analysis with SPSS ver.18 was applied. In the test of variation according to the thickness of all additional phantoms, as the phantoms which 0.9% sodium chloride, silicon and paraffin increased, the attenuation variation was higher(P<0.005). There was no significant difference in the attenuation variation and the quality of image for type of the additional phantom. Therefore, if the effect of the image applying to breast implants in Breast Specific Gamma Imaging is confirmed, the higher diagnostic value can be achieved.

실리콘 슬러지로부터 실리콘의 전해회수(電解回收) (Recovery of Silicon from Silicon Sludge by Electrolysis)

  • 박제식;장희동;이철경
    • 자원리싸이클링
    • /
    • 제21권5호
    • /
    • pp.31-37
    • /
    • 2012
  • 실리콘 웨이퍼공정에서 발생하는 실리콘 슬러지로부터 실리콘 및 탄화규소를 분리한 다음, 전해법으로 원소형태의 실리콘을 회수하는 연구를 수행하였다. 실리콘 슬러지의 주요 불순물은 절삭유, 금속불순물, 실리콘 및 실리콘 카바이드를 들 수 있다. 기계적 선별법으로 분리한 실리콘, 탄화실리콘 복합물을 $1000^{\circ}C$에 1시간동안 염화 배소하여 응축하고 회수한 사염화실리콘을 이온성액체인 $[Bmpy]Tf_2N$에 용해하여 전해액으로 사용하였다. 순환전위법으로부터 $[Bmpy]Tf_2N$의 안정한 전압구간과 사염화실리콘을 용해한 $[Bmpy]Tf_2N$ 전해액에서 실리콘의 환원으로 추정되는 환원피크를 얻을 수 있었다. 정전위법(-1.9 V vs. Pt-QRE)에서 1시간동안 금 전극 상에 전해한 다음, 전극표면을 XRD, SEM-EDS 및 XPS 분석을 통하여 실리콘이 원소형태로 전착되었음을 확인하였으며, 미량의 산소가 검출되는 것은 분석과정에서 시편이 공기 중에 노출되었기 때문으로 판단된다.

Slurry Phase Reaction of Elemental Silicon with Methanol in the Presence of Copper: Direct Synthesis of Trimethoxysilane

  • Han, Joon-Soo;Cho, Joo-Hyun;Lee, Myong-Euy;Yoo, Bok-Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.683-686
    • /
    • 2009
  • Slurry phase reaction of elemental silicon with methanol has been studied in the presence of copper using a small amount of cuprous chloride as an activator in DBT (dibenzyltoluene) at various temperatures from 200 ${^{\circ}C}$ to 320 ${^{\circ}C}$. Trimethoxysilane (1a) with a Si-H unit was obtained as the major product and tetramethoxysilane (1b) as the minor product. The reaction worked well using a 0.5 wt % CuCl as an activator. The optimum temperature for this direct synthesis of 1a was 240 ${^{\circ}C}$. Methoxysilanes were obtained in 95% yield with 81% selectivity to 1a from 85% conversion of elemental silicon.

결정질 실리콘 기반 태양광산업에서의 근로자노출 가능 유해인자 (Workers' Possible Exposure Hazards in Solar Energy Industries)

  • 장재길;박현희
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.24-33
    • /
    • 2013
  • Renewable energy industries, including sola cell plants, has been ever increasing ones for reducing fossil fuel consumption and strengthening national energy policy. In this paper we tried to identify occupational health hazards in solar cell-related industries operated in Korea. Poly silicon, silicon ingot and wafer, solar cell and module are major processes for producing solar cells. Poly silicon operations may cause hazards to workers from metal silicon, silanes, silicon, hydro fluoric acid and nitric acid. Solar cells could not be constructed without using metals such as aluminum and silver, acids such as hydrofluoric acid and nitric acid, bases such as sodium hydroxide and potassium hydroxide, and solvent and phosphorus chloride oxide. Workers in module assembly process may exposed to isopropanol, flux, solders that contain lead, tin and/or copper. To prevent occupational exposure to these hazards, it is essential to identify the hazards in each process and educate workers in industries with proper engineering and administrative control measures.