• Title/Summary/Keyword: Silicon Solar Cells

Search Result 592, Processing Time 0.028 seconds

Ion implatation technology for fabrication of high efficiency crystalline silicon solar cells

  • Jeon, Min-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.81.1-81.1
    • /
    • 2015
  • 최근 실리콘(Si) 원재료 가격의 하락으로 인하여, 태양광 시장에서 성능 좋은 저가의 태양광 모듈을 요구하고 있다. 즉, 와트(W)당 낮은 가격의 태양광 모듈을 선호하기 때문에 경쟁력을 갖추기 위하여서는 많은 출력을 낼 수 있는 고효율의 태양전지가 요구된다. 그래서 주목을 받고 있는 것이 N-type 실리콘 기판을 사용한 고효율 태양전지이다. 하지만, n-type Si 기판의 경우, pn 접합의 형성을 위하여서 기존의 열 확산(Thermal diffusion)법에 의한 에미터(Emitter) 형성방법은 양질의 pn접합을 형성하기에는 한계가 있다. 그로 인하여 주목하고 있는 기술이 반도체 공정에서 널리 사용되고 있는 이온 주입(Ion implantation)방식이다. 이 기술은 양질의 에미터 형성을 위하여, 동일한 양의 불순물(dopant) 주입, 정확한 접합 깊이 제어 등이 가능한 방법으로 고효율 태양전지 제작에 필수적이며, 가능한 기술이라고 할 수 있다. 본 발표에서는 어플라이드 머트리얼즈(Applied Materials)사가 보유하고 있는 고효율 태양전지 제작에 필수적인 이온주입방식의 기술과 양산화 가능한 관련장비 등을 소개 하고자 한다.

  • PDF

The study of High-efficiency method usign Tri-crystalline Silicon solar cells (삼결정 실리콘 태양전지의 19%변환 효율 최적요건 고찰에 관한 연구)

  • 이욱재;박성현;고재경;김경해;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.318-321
    • /
    • 2002
  • This paper presents a proper condition to achieve high conversion efficiency using PC1D simulator on sri-crystalline Si solar cells. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 $\mu\textrm{m}$, front surface recombination velocity 100 cm/s, sheet resistivity of emitter layer 100 Ω/$\square$, BSF thickness 5 $\mu\textrm{m}$, doping concentration 5${\times}$10$\^$19/ cm$\^$-3/. Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %.

  • PDF

DEVELOPMENT OF PYRAMIDAL TYPE 2-AXES ANALOG SUN SENSOR (피라미드형 2축 아날로그 태양센서의 개발)

  • 이성호;이현우;남명룡;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.267-276
    • /
    • 2000
  • PSS(Pyramidal type 2-axes Analog Sun Sensor) which will be used for KAISTSAT-4 is designed to be small, light, low in power consumptions, and adequate for small satellite attitude sensor. The PSS for the KAISTSAT-4 consists of the pyramidal structure, solar cells and amplifier. The pyramidal structure is suitable for the 2-axes sensing, Solar cells are made up of a rectangular shape of crystal silicon. The PSS measures the angle of incident light and initial satellite attitude measurement, and provides an alarm for the sunlight-sensitive payloads. This paper explains the PSS structure and the characteristic test result about the PSS with $\pm$$50^{\circ}$in FOV, less than $\pm$$3^{\circ}$in accuracy.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Micromorph Schottky Silicon Solar Cells

  • Kim, Joon-Dong;Han, Chang-Soo;Yun, Ju-Hyung;Yi, Jun-Sin;Park, Yun-Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.130-130
    • /
    • 2010
  • Thin Si films were grown by a plasma-enhanced chemical vapor deposition (PECVD, SNTEK, Korea) system. Two different deposition condition were applied and formed a fully amorphous Si (a-Si) film and a micromorph mixing of microcrystalline Si (mc-Si) and a-Si film. Under one sun illumination, the micromorph device provided the enhanced open circuit voltage and fill factor values. It presents the fabrication of the micromorph Si film and the a-Si film by modulating a deposition condition. The performances of the Si thin film Schottky solar cells are discussed.

  • PDF

a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 ㎛ Thin Wafer Substrate (50 ㎛ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석)

  • Song, Jun Yong;Choi, Jang Hoon;Jeong, Dae Young;Song, Hee-Eun;Kim, Donghwan;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage ($V_{oc}$) was observed when the wafer thickness was thinned from $170{\mu}m$ to $50{\mu}m$. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied $V_{oc}$ of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for $50{\mu}m$ c-Si substrate, and 0.704 V for $170{\mu}m$ c-Si. The $V_{oc}$ in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of $V_{oc}$ in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.

A study on the oxide semiconductor $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, solar cells fabricated by two source evaporation (이가열원(二加熱源) 증착법(蒸着法)에 이한 산화물(酸化物) 반도체(半導體) $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, 태양전지(太陽電池)에 관한 연구(硏究))

  • Jhoon, Choon-Saing;Kim, Yong-Woon;Lim, Eung-Choon
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.62-78
    • /
    • 1992
  • The solar cells of $ITO_{(n)}/Si_{(p)}$, which are ITO thin films deposited and heated on Si wafer 190[$^{\circ}C$], were fabricated by two source vaccum deposition method, and their electrical properties were investigated. Its maximum output is obtained when the com- position of the thin film consist of indium oxide 91[mole %] and thin oxide 9[mole %]. The cell characteristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min]. Also, we investigated the spectral response with short circuit current of the cells and found that the increasing of the annealing caused the peak shifted to the long wavelength region. And by experiment of the X-ray diffraction, it is shown to grow the grains of the thin film with increasment of annealing temperature. The test results from the $ITO_{(n)}/Si_{(p)}$ solar cell are as follows. short circuit current : Isc= 31 $[mW/cm^2]$ open circuit voltage : Voc= 460[mV] fill factor : FF=0.71 conversion efficiency : ${\eta}$=11[%]. under the solar energy illumination of $100[mW/cm^2]$.

  • PDF

Texturing Multi-crystalline Silicon for Solar Cell (태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제)

  • Ihm, DaeWoo;Lee, Chang Joon;Suh, SangHyuk
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Lowering surface reflectance of Si wafers by texturization is one of the most important processes for improving the efficiency of Si solar cells. This paper presents the results on the effect of texturing using acidic solution mixtures containing the catalytic agents to moderate etching rates on the surface morphology of mc-Si wafer as well as on the performance parameters of solar cell. It was found that the treatment of contaminated crystalline silicon wafer with $HNO_3-H_2O_2-H_2O$ solution before the texturing helps the removal of organic contaminants due to its oxidizing properties and thereby allows the formation of nucleation centers for texturing. This treatment combined with the use of a catalytic agent such as phosphoric acid improved the effects of the texturing effects. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell. Employing this technique, we were able to fabricate mc-Si solar cell of 16.4% conversion efficiency with anti-reflective (AR) coating of silicon nitride film using plasma-enhanced chemical vapor deposition (PECVD) and Si wafers can be texturized in a short time.

The current status in the silicon crystal growth technology for solar cells (태양전지용 규소 결정 성장 기술 개발의 현황)

  • Lee, A-Young;Lee, Dong-Gue;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • Three kinds of crystalline silicon have been used for the solar cell grade. First of all, single crystalline silicon is the main subject to enhance the production yield. Most of the efforts are focused on the control of the melt-crystal interface shape affected by the crystal-crucible rotation rate. The main subject in the multi-crystalline silicon ingot is the contamination control. Faster Ar gas flow above the melt surface will lower the carbon contamination in the crystal. And also, twin boundary electrically inactive is found to be more effective than grain boundary for the improvement of the MCLT. In the case of mono-like silicon material, propagation of the multi-crystalline silicon growing from the inner side crucible is the problem lowering the portion of the single crystalline part at the center of the ingot. Crystal growing apparatus giving higher cooling rate at the bottom and lower cooling rate at the side crucible was suggested as the optimum solution obtaining higher quality of the mono-like silicon ingot. Proper application of the seeds at the bottom of the crucible would be one of the solutions.

Formation of Silicon Nanoparticles Using Laser Pyrolysis (레이저 열분해법을 이용한 실리콘 나노입자 제조)

  • Park, Joo Hyung;Lee, Jae Hee;Song, Jinsoo;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • To enhance the performance of photovoltaic a-Si:H solar cells with a hybrid-type light absorbing structure of single crystal silicon nanoparticles (Si NPs) in a-Si:H matrix, single crystal Si NPs were produced by laser pyrolysis. The Si NPs were synthesized by $SiH_4$ gas decomposition using a $CO_2$ laser. The properties of Si NPs were controlled by process parameters such as $CO_2$ laser power, reactive gas pressure, and $H_2/SiH_4$ gas flows. The crystalline properties and sizes of Si NPs were analyzed by High Resolution Transmission Electron Microscopy (HRTEM). The sizes of Si NPs were controllable in the range of 5-15 nm in diameter and the effects of process parameters of laser pyrolysis were systematically investigated.

  • PDF