• Title/Summary/Keyword: Silicon Material

Search Result 1,915, Processing Time 0.036 seconds

COMPARISON OF THE SHEAR BOND STRENGTH OF GLASS IONOMER CEMENTS AND COMPOMER ACCORDING TO DENTIN SURFACE TREATMENT (상아질표면처리에 따른 글래스아이오노머 및 Compomer의 전단결합강도의 비교)

  • Jeong, Hyun-Suk;Lee, Hea-Joo;Hur, Buck
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.416-425
    • /
    • 1999
  • The purpose of this study was to evaluate shear bond strength of glass ionomer cements and compomer according to dentin surface treatment method. The materials used in this study were dentin conditioner and cavity conditioner for dentin treatment: Ketacfil, Fuji II LC, and Dyract for restoration. In this study, 90 sound bovine teeth were selected and then the teeth were embeded in improved stone and were grounded with 400 to 600 grit silicon carbide paper to create a flat dentin surfaces. The teeth were divided into nine groups as follows ; Group 1A : Samples bonded to dentin surface with Ketacfil after no treatment Group 1B : Samples bonded to dentin surface with Ketacfil after applicating dentin conditioner Group 1C : Samples bonded to dentin surface with Ketacfil after applicating cavity conditioner Group 2A : Samples bonded to dentin surface with Fuji II LC after no treatment Group 2B : Samples bonded to dentin surface with Fuji II LC after applicating dentin conditioner Group 2C : Samples bonded to dentin surface with Fuji II LC after applicating cavity conditioner Group 3A : Samples bonded to dentin surface with Dyract after no treatment Group 3B : Samples bonded to dentin surface with Dyract after applicating dentin conditioner Group 3C : Samples bonded to dentin surface with Dyract after applicating cavity conditioner Treated dentin surfaces were observed under SEM. After filling of each materials, shear bond strenth was evaluated and then debonded surfaces were observed under SEM. The following results were obtained; 1. The shear bond strengths obtained were decreased as Fuji II LC, Dyract, Ketacfil in that order and there was statistically significant difference(p<0.05). 2. About Group 1. the shear bond strengths were decreased as 1C, 1B and 1A in that order. But there was no significant difference between group 1B and 1C (p<0.05). 3. About Group 2, the shear bond strengths were decreased as group 2B, 2A and 2C in that order. And there was significant difference between group 2B and 2C (p<0.05). 4. About Group 3, the shear bond strengths were decreased as group 3A, 3C and 3B in that order. And there was signicant difference between group 3A and 3B (p<0.05). 5. As a result of observation under SEM, the fracture patterns of Fuji II LC and Dyract were adhesive failures, but those of Ketacfil were cohesive failure of material and mixture of cohesive and adhesive failure.

  • PDF

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.

Effect of Alkaline Activator and Curing Condition on the Compressive Strength of Cementless Fly Ash Based Alkali-Activated Mortar (시멘트를 사용(使用)하지 않은 플라이애시 알칼리 활성(活性) 모르타르의 압축강도(壓縮强度)에 미치는 알칼리 활성제(活性劑) 및 양생조건(養生條件)의 영향(影響))

  • Kang, Hyun-Jin;Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.39-50
    • /
    • 2009
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effective in the reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in order to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Feasibility of Korean Rice Husk Ash as Admixture for High Strength Concrete: Particle Size Distribution, Chemical Composition and Absorption Capacity Depending on Calcination Temperature and Milling Process (고강도 콘크리트 혼화재로서 국산 왕겨재의 활용 가능성: 소성 온도와 분쇄공정 유무에 따른 입도, 성분 및 흡습 성능)

  • Kwon, Yang-Hee;Hong, Sung-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.111-117
    • /
    • 2017
  • This study examined the material properties of Korean rice husk ash (RHA) according to the manufacturing process, and evaluated the feasibility of its use as a new admixture for high strength concrete. For this purpose, its particle size distribution, chemical composition, and microstructure were analyzed under various parameters, such as calcination temperature ($400^{\circ}C$, $650^{\circ}C$, and $900^{\circ}C$) and the inclusion of a milling process. X-ray fluorescence analysis confirmed that the silicon oxide ($SiO_2$) content of RHA was improved to more than 92% with a calcination process at $650^{\circ}C$ or higher. In addition, microstructural analysis showed that the RHA calcined at $650^{\circ}C$ has a porous structure. Because of this, the absorption capacity of the RHA was improved. On the other hand, when the milling process was applied, the porous structure was destroyed; thus, the absorption capacity tended to decrease further. Based on the analysis results, it was concluded that RHA calcined at $650^{\circ}C$ can be used as an admixture for high strength concrete, which possesses functions of both a shrinkage reducing agent and a pozzolanic activator.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.

The Interdigitated-Type Capacitive Humidity Sensor Using the Thermoset Polyimide (열경화성 폴리이미드를 이용한 빗살전극형 정전용량형 습도센서)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • In this study, we fabricated a capacitive humidity sensor with interdigitated (IDT) electrodes using a thermosetting polyimide as a humidifying material. First, the number of electrodes, thickness, and spacing of the polyimide film were optimized, and a mask was designed and fabricated. The sensor was fabricated on a silicon substrate using semiconductor processing equipment. The area of the sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were each $3{\mu}m$. The number of electrodes was 166, and the length of an electrode was 1.294 mm for the sensitivity of the sensor. The sensor was then packaged on a PCB for measurement. The sensor was inserted into a chamber environment with a temperature of $25^{\circ}C$ and connected to an LCR meter to measure the change in capacitance at relative humidity (RH) of 20% to 90%, 1 V, and 20 kHz. The results showed a sensitivity of 26fF/%RH, linearity of < ${\pm}2%RH$, and hysteresis of < ${\pm}2.5%RH$.

Improving the DIMP Sorption Capacity Durability of Zirconium Based Metal-Organic Frameworks Coated with Polydimethylsiloxane at High Humidity (PDMS 코팅을 통한 지르코늄 기반 금속유기골격체의 고습 환경에서 DIMP 흡착 성능 지속성 개선)

  • Jang, Wonhyeong;Jeong, Sangjo
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.296-301
    • /
    • 2022
  • Due to the fact that zirconium based metal-organic frameworks (Zr-MOFs), such as UiO-66, have a large specific surface area and excellent selective adsorption capacity, Zr-MOFs are gaining attention as materials that can provide protection from the attack of chemical warfare agents in battleground. However, most of the metal-organic frameworks have an issue of selective adsorption capacity degraded by water molecules when exposed to the atmosphere, because of the weak metal-organic ligand bonds and the presence of voids. Therefore, polydimethylsiloxane (PDMS), a representative hydrophobic polymer material, was coated on the surface of UiO-66 to enhance the sustainability of the diisopropyl methylphosphonate (DIMP) sorption capacity in the battleground condition. Through the analysis of surface structure and organic functional group distribution of PDMS coated UiO-66, silicon was confirmed to be evenly coated. The contact angle increased by over 30° for the PDMS coated UiO-66, indicating that the hydrophobicity was improved. In addition, both the UiO-66 and PDMS coated UiO-66 were used as adsorbents for DIMP, a similar chemical warfare agent, to investigate the durability of adsorption capacity in a high humidity environment. The PDMS coated UiO-66 showed higher durability of adsorption capacity for 20 days than that of pristine UiO-66.