Acknowledgement
본 논문은 육군사관학교 핵·WMD 방호연구센터 2022년도(22-센터-1) 연구활동비 지원을 받아 연구되었습니다. 본 논문 작성에 필요한 분석 기회를 제공해준 서울과학기술대학교 공동실험실습관, 숙명여자대학교 공동기기실, 연세대학교 공동기기원 관계자들과 실험에 필요한 지원을 해준 이연희 님, 논문 작성에 도움을 주신 서울대학교 김진영 교수님에게 감사드립니다.
References
- H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
- X. Gong, K. Gnanasekaran, Z. Chen, L. Robison, M. C. Wasson, K. C. Bentz, S. M. Cohen, O. K. Farha, and N. C. Gianneschi, Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy, J. Am. Chem. Soc., 142, 17224-17235 (2020). https://doi.org/10.1021/jacs.0c08773
- S. Yang, S. Nam, T. Kim, J. Im, H. Jung, J. Kang, S. Wi, B. Park, and C. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework, J. Am. Chem. Soc., 135, 7394-7397 (2013). https://doi.org/10.1021/ja311550t
- J. Kim, R. Balderas-Xicohtencatl, L. Zhang, S. Kang, M. Hirscher, H. Oh, and H. Moon, Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation, J. Am. Chem. Soc., 139, 15135-15141 (2017). https://doi.org/10.1021/jacs.7b07925
- H. Chen, K. Shen, Y. Tan, and Y. Li, Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties, ACS Nano, 13, 7800-7810 (2019). https://doi.org/10.1021/acsnano.9b01953
- Y. Liu, S. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS Nano, 9, 12358-12364 (2015). https://doi.org/10.1021/acsnano.5b05660
- W. Jang, H. Kim, and S. Jeong, The characteristics of diisopropyl methylphosphonate adsorption on zirconium-based metal organic frameworks manufactured by using different acids as modulators, Appl. Chem. Eng., 32, 524-531 (2021). https://doi.org/10.14478/ACE.2021.1061
- H. Kim, J. Seo, H. Kim, S. Jeong, K. Baek, J. Kim, S. Min, S. Kim, and K. Jeong, Decomposition of the simulant 2-chloroethyl ethyl sulfide blister agent under ambient conditions using metal-organic frameworks, ACS Appl. Mater. Interfaces, 13, 3782-3792 (2021). https://doi.org/10.1021/acsami.0c17022
- J. M. Palomba, S. P. Harvey, M. Kalaj, B. R. Pimentel, J. B. DeCoste, G. W. Peterson, and S. M. Cohen, High-throughput screening of MOFs for breakdown of V-series nerve agents, ACS Appl. Mater. Interfaces, 12, 14672-14677 (2020). https://doi.org/10.1021/acsami.9b21693
- J. E. Mondloch, M. J. Katz, W. C. Isley, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015). https://doi.org/10.1038/nmat4238
- Y. Kye, K. Jeong, and D. Kim, Recent trend in catalysis for degradation of toxic organophosphorus compounds, Appl. Chem. Eng., 30, 513-522 (2019). https://doi.org/10.14478/ACE.2019.1069
- X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, and J. Gu, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67, ACS Appl. Mater. Interfaces, 7, 223-231 (2015). https://doi.org/10.1021/am5059074
- M. Kalaj, M. R. Momeni, K. C. Bentz, K. S. Barcus, J. M. Palomba, F. Paesani, and S. M. Cohen, Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation, Chem. Commun., 55, 3481-3484 (2019). https://doi.org/10.1039/c9cc00642g
- M. Kalaj, J. M. Palomba, K. C. Bentz, and S. M. Cohen, Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation, Chem. Commun., 55, 5367-5370 (2019). https://doi.org/10.1039/c9cc02252j
- D. Song, J. Bae, H. Ji, M. Kim, Y. Bae, K. Park, D. Moon, and N. Jeong, Coordinative reduction of metal nodes enhances the hydrolytic stability of a paddlewheel metal-organic framework, J. Am. Chem. Soc., 141, 7853-7864 (2019). https://doi.org/10.1021/jacs.9b02114
- T. Q. N. Tran, G. Das, and H. Yoon, Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection, Sens. Actuators B Chem., 243, 78-83 (2017). https://doi.org/10.1016/j.snb.2016.11.126
- P. Kumar, K. Vellingiri, K. Kim, R. J. C. Brown, and M. J. Manos, Modern progress in metal-organic frameworks and their composites for diverse applications, Microporous Mesoporous Mater., 253, 251-265 (2017). https://doi.org/10.1016/j.micromeso.2017.07.003
- X. Zhang, X. Lv, X. Shi, Y. Yang, and Y. Yang, Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air, J. Colloid Interface Sci., 539, 152-160 (2019). https://doi.org/10.1016/j.jcis.2018.12.056
- C. Yang, U. Kaipa, Q. Z. Mather, X. Wang, V. Nesterov, A. F. Venero, and M. A. Omary, Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, J. Am. Chem. Soc., 133, 18094-18097 (2011). https://doi.org/10.1021/ja208408n
- J. M. Taylor, R. Vaidhyanathan, S. S. Iremonger, and G. K. H. Shimizu, Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers, J. Am. Chem. Soc., 134, 14338-14340 (2012). https://doi.org/10.1021/ja306812r
- W. Zhang, Y. Hu, J. Ge, H.-L. Jiang, and S.-H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity, J. Am. Chem. Soc., 136, 16978-16981 (2014). https://doi.org/10.1021/ja509960n
- V. Singh, T. Guo, H. Xu, L. Wu, J. Gu, C. Wu, R. Gref, and J. Zhang, Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding, Chem. Commun., 53, 9246-9249 (2017). https://doi.org/10.1039/C7CC03471G
- N. Tian, Y. Gao, J. Wu, S. Luo, and W. Dai, Water-resistant HKUST-1 functionalized with polydimethylsiloxane for efficient rubidium ion capture, New J. Chem., 43, 15539-15547 (2019). https://doi.org/10.1039/c9nj03632f
- J. Kim, H. Hwang, D. Kang, and H. Kang, Physical characteristics of silicone modified epoxy as a undercoating materials, Polymer (Korea), 38, 371-377 (2014). https://doi.org/10.1016/S0032-3861(96)00503-4
- S. Han, K. Kim, J. Kim, S. Uhm, and Y. Kim, Hydrophobic polydimethylsiloxane thin films prepared by chemical vapor deposition: Application in water purification, Appl. Chem. Eng., 28, 1-7 (2017). https://doi.org/10.14478/ACE.2016.1129
- M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49, 9449-9451 (2013). https://doi.org/10.1039/c3cc46105j
- E. Park, J. Sim, M. Jeong, H. Seo, and Y. Kim, Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles, RSC Adv., 3, 12571-12576 (2013). https://doi.org/10.1039/c3ra42402b
- Y. Cho, E. Park, and Y. Kim, Removal of oil by gelation using hydrophobic silica nanoparticles, J. Ind. Eng. Chem., 20, 1231-1235 (2014). https://doi.org/10.1016/j.jiec.2013.08.005
- S. Han, K. Kim, J. Kim, S. Uhm, and Y. Kim, Hydrophobic polydimethylsiloxane thin films prepared by chemical vapor deposition: Application in water purification, Appl. Chem. Eng., 28, 1-7 (2017). https://doi.org/10.14478/ACE.2016.1129
- E. Park, B. Kim, D. Park, S. Han, D. Kim, W. Yun, and Y. Kim, Fabrication of superhydrophobic thin films on various substrates using SiO2 nanoparticles coated with polydimethylsiloxane: towards the development of shielding layers for gas sensors, RSC Adv., 5, 40595-40602 (2015). https://doi.org/10.1039/C5RA05470B
- S. Kim, M. Seo, and S. Uhm, Study on the optimization of superhydrophobic coating for the durability of gas diffusion layer in alkaline fuel cells, Appl. Chem. Eng., 28, 691-695 (2017). https://doi.org/10.14478/ACE.2017.1091
- J. Lee, J. Kim, H. Kim, Y. Bae, K. Lee, and H. Cho, Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices, J. Micromech. Microeng., 23, 035007 (2013). https://doi.org/10.1088/0960-1317/23/3/035007
- X. Gao, R. Cui, G. Ji, and Z. Liu, Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy, Nanoscale, 10, 6205-6211 (2018). https://doi.org/10.1039/c7nr08892b
- R. Xu, Y. Kang, W. Zhang, X. Zhang, and B. Pan, Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport, Angew. Chem. Int. Ed., 61, e202115443 (2022).
- M. Ding and H. Jiang, Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization, CCS Chem., 2, 2740-2748 (2020).