• Title/Summary/Keyword: Silicic

Search Result 133, Processing Time 0.034 seconds

A Study on the Lipid Components of Hazel Nut Oil (개암종실(種實)의 지질성분(脂質成分)에 관한 연구)

  • Hong, Hyung-Ki;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.361-365
    • /
    • 1978
  • Physico-chemical characteristics of crude oil extracted from Korean Hazel nut were determined and its proximate composition was also analyzed. The proximate composition of Hazel nut was shown to be moisture 4.0%, crude protein 15.5%, crude fat 64%, nitrogen free extractive 11.7%, crude fiber 2.0% and crude ash 2.5%. The content of crude fat in Corylus sieboldiana was about 3% higher than in Corylus mandshurica.. Physico-chemical characteristics of crude oil found were: specific gravity, $0.916(15/15^{\circ}C)$; refractive index, $1.468(15^{\circ}C)$; saponification value, 184; iodine value, 94.5: acid value, 0.2; and unsaponifiable content, 0.25%. The lipid fractions in the crude oil obtained by silicic acid column chromatography were found to be composed of about 97% neutral lipids and about 3% compound lipids. Among the neutral lipids by TLC, triglycerides were 98% as the major components, free fatty acids and free strols were 0.5% and 1.3%, respectively. Esterified sterols were not found. The predominant fatty acids were oleic $(76{\sim}80%)$, linoleic (15%) and palmitic (5.0%), and the P/S ratio was $1.8{\sim}2.8$.

  • PDF

Studies on Lipids in Fresh-Water Fishes 1. Distribution of Lipid Components in Various Tissues of Crucian Carp, Carassius carassius (담수어의 지질에 관한 연구 1. 붕어(Carassius carassius)의 부위별 지질성분의 분포)

  • CHOI Jin-Ho;RO Jae-Il;PYEUN Jae-Hyeong;CHOI Kang-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.333-343
    • /
    • 1984
  • This study was designed to elucidate the lipid and its fatty acid composition in various tissues of fresh water fishes. The free and bound lipids in meat, skin and viscera of crucian carp (Carassius carassius) were extracted with ethyl ether and the mixed solvent of chloroform-methanol-water (10/9/1, v/v). The free and bound lipids were fractionated into neutral lipid, glycolipid and phospholipid by a silicic acid column chromatography using chloroform, acetone and methanol, respectively, and quantitatively analyzed by thin layer chromatography (TLC) and TLC scanner. The fatty acid compositions of polar ana nonpolar lipids in meat, and these of neutral lipid in various tissues were analyzed by gas liquid chromatography(GLC). The free lipid content in meat, skin and viscera was $6.22\%,\;9.95\%\;and\;9.76\%$, whereas the bound lipid content in those tissues was $10.01\%,\;3.56\%\;and\;7.36\%$, respectively. The neutral lipid contents in free lipid were ranged from $71.7\%$ to $89.4\%$, and $3{\sim}9$ times higher than those in bound lipid, while the phospholipid contents in bound lipid were ranged from $42.3\%$ to $63.2\%$, and $5{\sim}10$ times higher than those in free lipid. The neutral lipid was mainly consisted of triglyceride ($81.91{\sim}88.34\%$) in free lipid, and esterified sterol & hydrocarbon ($41.00{\sim}59.43\%$) in bound lipid. The phospholipid was mainly consisted of phosphatidyl ethanolamine($54.56{\sim}66.79\%$) and phosphatidyl choline ($21.88{\sim}34.28\%$) in free lipid, and phosphatidyl choline ($50.49{\sim}70.57\%$) and phosphatidyl ethanolamine ($15.74{\sim}24.92\%$) in bound lipid. The major fatty acids of polar lipid in free and bound lipids were $C_{16:0}\;(17.53\%,\;19.29\%)$, $C_{18:1}\;(24.57\%,\;16.08\%)$, $C_{18:2}\;(8.39\%,\;4.03\%)$, $C_{22:5}\;(1.68\%,\;8.08\%)$, and $C_{22:6}\;(6.22\%,\;13.60\%)$ and these of neutral lipid in free and bound lipids were $C_{16:0}\;(17.67\%,\;24.15\%)$, $C_{16:1}\;(12.81\%,\;5.52\%)$, $C_{18:1}\;(24.13\%,\;13.02\%)$, $C_{18:2}\;(15.47\%,\;8.68\%)$, $C_{22:5}\;(0.88\%,\;4.14\%)$ and $C_{22:6}\;(1.17\%,\;5.04\%)$, respectively. The unsaturations (TUFA/TSFA) of polar lipid in free and bound lipids were 2.02 and 2.74, and $1.5{\sim}2.0$ times higher than 1.51 and 1.23 of nonpolar lipid. In both polar and nonpolar lipids, w3 highly unsaturated fatty acid (w3HUFA) content of bound lipid was $2{\sim}5$ times higher than that of free lipid. The polyenoic acid contents such as $C_{20:5},\;C_{22:5}\;and\;C_{22:6}$ in bound lipid were $2{\sim}5$ times higher than these in free lipid. Consequently, there were significant difference between the lipid and its fatty acid composition in free and bound lipids and/or in various tissues.

  • PDF

Studies on the Development of Food Resources from Waste Seeds IV. Chemical Composition of Red Pepper Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第) 4 보(報) : 고추씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Bae, Man Jong;Hwang, Joo Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.46-50
    • /
    • 1983
  • In order to find out the possibility of utilizing red pepper seed as food resources of fats and proteins, a series of studies were conducted. The red pepper seed contained 27.6% of crude fat and 22.2% of crude protein. The lipid fractions obtained by silicic acid column chromatography were mainly composed of 95.4% neutral lipid, where as compound lipid were 4.6%. Among the neutral lipid separated by thin layer chromatography, triglyceride was 85.6%, sterol ester 4.9%, free fatty acids 3.4%, diglyceride 2.5%, sterol 2.2% and monoglyceride 1.1%, respectively. The predominant fatty acids of red pepper seed oil were linoleic acid (57.1-75.4%), palmitic acid (13.9-21.3%) and oleic acid (8.0-15.1%), especially glycolipid contained 1.7% of linolenic acid and small amount of myristic acid and arachidic acid. The salt soluble protein of red pepper seed was highly dispersible in 0.02M sodium phosphate buffer containing 1.0M $MgSO_4$, and the extractability of seed protein was about 25.0%. Glutamic acid and arginine were major amino acids of red pepper seed protein. The electrophoretic analysis showed 6 bands in seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was about 62.2%. Glutamic acid (19.9%) was major amino acid of the main protein, followed by glycine and alanine. The molecular weight of the main protein was estimated to be 93,000.

  • PDF

Studies on the Development of Food Resources from Waste Seeds -I. Chemical Composition of Grape Seed- (폐엽종실(廢棄種實)의 식량자원화(貪糧資源化)에 관(關)하여 -제(第) 1 보(報) : 포도씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Kwon, Joong-Ho;Hwang, Joo-Ho;Choi, Jae-Chun;Shin, Dae-Hyn
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.250-256
    • /
    • 1982
  • A series of studies were conducted to find out the possibility of utilizing grape seed as resources of food fats and proteins, and the results of the studies are as follows: The grape seed contained 25.1%, of crude fat and 12.0% of crude protein. The lipid, fractions obtained by silicic acid column chromatography were mainly composed of about 95.5% neutral lipid, whereas compound lipid was only 4.5% level. Among the neutral lipid by thin layer chromatography, triglyceride was 91.89%, sterol ester, sterol, diglyceride and free fatty acid were 3.24%, 2.87%, 1.20% and 0.80%, respectively The predominant fatty acids of total and neutral lipids were linoleic acid $(69.72{\sim}71.72%)$ and oleic acid $18.09{\sim}19.46%)$, but those of glycolipid and phospolipid were linoleic acid $(31.49{\sim}38.18%)$, oleic acid $(20.20{\sim}35.27%)$ and palmitic acid $(26.80{\sim}39.98%)$. The major fatty acids of triglyceride separated from neutral lipid were oleic acid (43.08%), linoleic acid (38.42%) and palmitic acid (11.60%). The salt soluble protein of grape seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 31%. Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The electrophoretic analysis showed 3 bands in grape seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 82%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main grape seed protein. The molecular weight for the main protein of the grape seed was estimated to be 81,000.

  • PDF

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.

Studies on Constituent Variation during Storage after Freeze-Drying of Chestnut (밤(栗)의 동결건조(凍結乾燥)에 의(依)한 성분(咸分) 변화(變化)에 관(關)한 연구(硏究))

  • Ha, Bong-Seuk;Bae, Myong-Sook;Jeong, Tae-Myong;Sung, Nak-Ju;Son, Yaung-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.97-105
    • /
    • 1982
  • The edible portion of chestnut, Castenea crenata Sieb, et Zucc, were freeze-dried and subjected to analysis of minerals, lipid classes and fatty acid composition by silicic acid column chromatography and gas-liquid chromatography. The results of analysis for the minerals in chestnut showed that the contents of magnesium, iron and phosphorus were decreased during storage after freeze-drying. The contents of neutral lipids, glycolipids and phospholipids in the raw edible portion were 34.6, 38.6, and 26.8%, respectively. The contents of neutral lipids and phospholipids of the freeze-dried chestnut were decreased, while glycolipids were increased during storage. In the fatty acid composition of total lipid, $C_{16:0}$, $C_{18:2}$ and $C_{18:3}$ acid were abundant in the raw edible portion, but freeze-dried chestnut contained relatively much amount of $C_{16:0}$, $C_{18:1}$, and $C_{18:2}$ acid. It is noticeable that $C_{18:2}$ and $C_{18:3}$ acid in the freeze-dried chestnut were remarkably decreased during storage. Upon the fatty acid composition, total lipid contained $C_{18:2}$ and $C_{16:0}$ acid in the highest proportion, but neutral lipids, glycolipids and phospholipids contained $C_{16:0}$ and $C_{18:2}$ acid in the highest proportion. Cycloartenol (20.6%) was a major component in the 4-monomethylsterol fraction separated by thin layer chromatography and cyclolaudenol, cycloeucalenol, and citrostadienol were detected as minor components. Sitosterol (74.6%) was a major component in the 4-desmethylsterol fraction separated by thin-layer chromatography and ${\Delta}^5-avensterol$, campesterol, stigmasterol and brassicasterol were also detected as minor components.

  • PDF

Lipid Composition of Oyster, Arkshell and Sea-mussel (굴, 피조개 및 진주담치의 지질조성에 관한 연구)

  • YOON Ho-Dong;BYUN Han-Seok;CHUN Seok-Jo;KIM Seon-Bong;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.321-326
    • /
    • 1986
  • Oyster (Crassostrea gigas), arkshell (Anadare(Scapharce) broughtonii) and sea-mussel (Mytilus edulis) were investigated as to their lipid classes. Lipid extracts from shellfishes were fractionated into neutral lipid (NL), glycolipid (GL) and phospho-lipid (PL) by column chromatography with silicic acid. The fatty acid compositions of their lipid classes and lipid fractions were determined by gas liquid chromatography (GLC). Total lipid contents of shellfishes were $3.5\%$ in the oyster, $1.4\%$ in the arkshell, $1.0\%$ in the sea-mussel. The major fatty acids of total lipids were palmitic acid, eicosapentaenoic acid and docosahexaenoic acid in the oyster and the sea-mussel, palmitic acid, oleic acid and eicosapentaenoic acid in the arkshell. The lipid composition of neutral lipid fractions in shellfishes was separated and identified as free sterol, free fatty acid, triglyceride, hydrocarbon and esterified sterol by TLC. Of these classes, triglyceride fraction was most abundant, amounting to 55.6, 77.7 and $60.4\%$ in the three samples mentioned above, respectively. The main fatty acids of glycolipid were palmitic acid, eicosaenoic acid and docosahexaenoic acid in oyster, myristic acid, palmitic acid and palmitoleic acid in the arkshell, docosahexaenoic acid, linolenic acid and palmitic acid in the sea-mussel. The major fatty acids of phospholipid were palmitic acid, eicosapentaenoic acid and docosahexaenoic acid in the oyster and sea-mussel, palmitic acid, eicosapentaenoic acid and erucic acid in the arkshell.

  • PDF

Similarities of Scaritoxin to Ciguatoxin on the Chromatographic Behaviours (Scaritoxin과 Ciguatoxin의 크로마토그라피상에서의 몇가지 유사성)

  • Joh, Yong-Goe;Scheuer, Paul J.
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 1985
  • In studying the structural work on ciguatoxin, parrot fish collected were identified as Scarus sordidus, S. frenatus, S. scaber and S. pectarlis, in which only S. sordidus contained toxic materials. Crude toxins obtained by silicic acid column chromatography, could be separated on a DEAE-cellulose column into two fractions, ST-1(less polar) and ST-2(polar) eluted with chloroform and chloroform-methanol(1:1). Furthermore ST-1 could be changed into ST-2 by repeated chromatography on DEAE-cellulose. Rf values of ST-1 and ST-2 were 0.60-0.75 and 0.30-0.54 on TLC coated with silica gel 60F-254 developed by chloroform-methanol-water-acetic acid (90:9.5:0.2:0.3) mixture. The peaks of ST-1 and ST-2 were not observed on each HPLC chromatogram at low sensitivity(2X), but by bioassay they were detected in the fraction of 24-27ml(less polar toxin, 120ng) and 22-27 ml (polar toxin, 150 ng). Less polar ciguatoxin from morey eel viscera also showed its peak in the same elution volume(25ml). Being subjected to chromatography on basic aluminum oxide (activity grade I) or to alkaline treatment, followed by basic aluminum oxide (activity grade I) chromatography ST-1 toxin was remarkably converted into the polar toxic component supposed to be polar ciguatoxin in both cases. In the latter case, approximately 74% of the residual toxicity was changed into the polar component, accompanied by about 50% loss of the initial toxicity. More than 26% of ST-2 toxicity was transformed into the less polar toxic component supposed to be less polar ciguatoxin on a deactivated aluminum oxide (activity grade V) column.

  • PDF

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.

Hydrochemical Characteristics of Natural Mineral Water in the Daebo and Bulguksa Granites (대보화강암과 불국사화강암지역 먹는샘물의 수리화학적 특성)

  • 조병욱;성익환;추창오;이병대;김통권
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.247-259
    • /
    • 1998
  • Groundwater quality of the natural mineral water was investigated in hydrochemical aspects in order to ensure that mineral water meets stringent health standards. There exist 20 mineral water plants in the Daebo granite and 4 mineral water plants in the Bulguksa granite, respectively. Both granite areas show some differences in water chemistry. The pH, EC, hardness, total ionic contents in groundwater of the Daebo granite area are higher relative to those of the Bulguksa granite area. The content of major cations is in the order of Ca>Na>Mg>K, while that of major anions shows the order of $HCO_3>SO_4$>Cl>F. The fact that the $Ca-Na-HCO_3$ type is most predominant among water types may reflect that the dissolution of plagioclase that is most abundant in granitic rocks plays a most important role in groundwater chemistry. Representative correlation coefficients between chemical species are variable depending on geology. In the Daebo granite area, $Ca-HCO_3(0.84),{\;}Mg-HCO_3(0.81),{\;}SiO_2-Cl(0.74),{\;}Na-HCO_3(0.70)$ show relatively good correlationships. In the Bulguksa granite area, fairly good correlationships are found among some components such as K-Mg(0.93), $K-HCO_3(0.92)$, Mg-Cl(0.92), $Cl-HCO_3(0.91)$, and K-F(0.90). According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite, whereas it is still greatly undersaturated with respect to dolomite, gypsum and fluorite. Based on the phase equilibrium it is clear that groundwater is mostly in equilibrium with kaolinite and becomes undersaturated with respect to feldspars, evolved from the stability area of gibbsite during water-rock interaction. While the activity of silica increases, there is no remarkable increase in the acivities of alkali ions and pH, which indicates that some amounts of silicic acid dissolved from silica phases as well as feldspars were provided to groundwater. It is concluded that chemical evolution of groundwater in granite aquifers may continue to proceed with increasing pH.

  • PDF