• 제목/요약/키워드: Silica-on-silicon

검색결과 128건 처리시간 0.026초

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • 제25권2호
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

Separation of Silicon and Silica by Liquid-Liquid Extraction

  • Fujita, Toyohisa;Oo, Kyaw-Zin;Shibayama, Atsushi;Miyazaki, Toshio;Kuzuno, Eiichi;Yen, Wan-Tai
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.719-724
    • /
    • 2001
  • The objective of this investigation was to separate silicon and silica for recycling by the liquid-liquid separation technique. In the preparation of silicon (Si) single crystal, a small amount of silicon is fixed on the surface of silica (quartz, $SiO_2$) crucible. The used crucible is crushed for recycling both silicon and silica in a high purity from the mixed powder. Zeta-potential of silicon and silica are almost the same at pH higher than 3. Their separation by simple flotation is ruled out. However, their hydrophobic characteristics are different in several different organic solvent from the measurement of contact angle. Therefore, the liquid-liquid extraction is employed to separate silicon and silica. The result indicates that the organic solvent mixed with dodecyl ammonium acetate could extracted the silicon powder at high purity (97-100%) with high recovery from the silica powder in the water phase.

  • PDF

물이 해동한 다음 발생하는 휜 침전물의 정성분석 및 이온의 변화 (Study on White Precipitate in Most of Waters after Thawing)

  • 윤수철;박해룡;윤형식;김창수
    • 한국식품위생안전성학회지
    • /
    • 제17권1호
    • /
    • pp.15-19
    • /
    • 2002
  • The objectives of this study were to investigate the change of silicon, cations and anions dissolved in water before and after thawing, and analyzed what the white-colored precipitate (WP) farmed after thawing was composed of. The silicon concentration that has been changed might have been compared with the weight of WP under water-free state. The major component of WP has been approved to be a silicon, while calsium was only a little contained. As the weight of WP has been nearly equal to the reduced silicon concentration, the weight of its could be changeable calculated by silica (SiO$_2$) molecular weight. Therefore, WP could have been presumed to be a silica. The more silicon concentration was increased, the more weight of silicon was increased. Except for the sample "C", the amounts of cations and anions could be found to be unchangeable nearly. As a result of that, WP has been apparent to be silica itself while most of ions (excluded with Si) of any others were not changed.

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

용존규소농도의 변화가 하천 부착조류의 밀도와 우점율에 미치는 영향에 관한 연구 (Effects on Density and Dominant rate of Periphyton by Variation of Dissolved Silicon Concentration)

  • 전경호
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.703-709
    • /
    • 2009
  • In this study, an artificial-waterway experiment was conducted, using an attachment plate, on which algae from Nanakita river was placed, to examine the influence exerted by the variation of the dissolved-silicon concentration on the river periphyton. As a result, the variation of the dissolved-silicon concentration was found to exert an influence on the density of the adhesion diatom, and the mole ratio limits of the silica were about $Si/P{\fallingdotseq}182$ and $Si/N{\fallingdotseq}16.4$ or less. Moreover, the mole ratio that is necessary for proliferation was found to be larger than the value of the oceanic algae. Senedesmus sp. and Ankistrodesmus sp., which used silica in adhesion chlorophyta, received the influence of the silicon concentration strongly, and the twowere found to be superior in the environment, making silica a restriction factor.

반도체 패키징 공정에서 발생하는 실리콘 슬러지의 재활용을 통한 Si@SiO2 제조 및 에폭시 몰딩 컴파운드로의 응용 (Synthesis of Silica Coated Silicon Substrate by Recycling Silicon Sludge Generated in Semiconductor Packaging Process and Their Application to Epoxy Molding Compound)

  • 추연룡;강다희;김하영;임지수;박규식;제갈석;윤창민
    • 유기물자원화
    • /
    • 제32권3호
    • /
    • pp.57-66
    • /
    • 2024
  • 본 연구에서는 반도체 패키징 공정에서 발생하는 실리콘 슬러지(Silicon-sludge, S-sludge)에 실리카층을 코팅(Silica coated silicon-sludge, SS-sludge)하였으며, 이를 에폭시 몰딩 컴파운드(Epoxy molding compound, EMC)의 필러로 적용하였다. 상세히는, 산세처리를 통해 S-sludge의 금속불순물을 제거하였으며, 졸-겔법을 통해 SS-sludge를 제조하였다. SS-sludge는 에폭시 고분자, 경화제 및 카본블랙과 혼합하여 EMC(Silica coated silicon-sludge EMC, SS-sludge EMC)로 제조되었다. 적외선 카메라를 통한 방열 특성 분석 결과, 제조된 SS-sludge EMC는 58.5℃의 가장 높은 표면 온도를 나타내었다. 이는 SS-sludge의 주성분인 실리콘의 높은 열전도도(150W/mK) 및 실리카 코팅에 의해 EMC의 방열 특성이 향상되었기 때문이다. 본 연구를 통해, 반도체 패키징 공정에서 발생하는 실리콘 슬러지를 고부가가치를 지닌 반도체 패키징용 EMC의 필러로 재활용할 수 있는 방안을 제시하였다.

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Planar Waveguide Devices for Communication and Sensing Applications

  • Okamoto, Katsunari
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.290-297
    • /
    • 2010
  • The paper reviews progress and future prospects of two kinds of planar waveguide devices; they are (a) silica and silicon photonics multi/demultiplexers for communications and signal processing applications, and (b) a novel waveguide spectrometer based on Fourier transform spectroscopy for sensing applications.

연마 Recycling 시간에 따른 콜로이드 실리카 슬러리의 안정성 및 연마속도 (Effect of Recycling Time on Stability of Colloidal Silica Slurry and Removal Rate in Silicon Wafer Polishing)

  • 최은석;배소익
    • 한국세라믹학회지
    • /
    • 제44권2호
    • /
    • pp.98-102
    • /
    • 2007
  • The stability of slurry and removal rate during recycling of colloidal silica slurry was evaluated in silicon wafer polishing. The particle size distribution, pH, and zeta potential were measured to investigate the stability of colloidal silica. Large particles appeared as recycling time increased while average size of slurry did not change. Large particles were identified by EDS(energy dispersive spectrometer) as foreign substances from pad or abraded silicon flakes during polishing. As the recycling time increased, pH of slurry decreased and removal rate of silicon reduced but zeta potential decreased inversely. Hence, it could be mentioned that decrease of removal rate is related to consumption of $OH^-$ ions during recycling. Attention should be given to the control of pH of slurry during polishing.