DOI QR코드

DOI QR Code

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Received : 2012.02.27
  • Accepted : 2012.05.06
  • Published : 2012.06.01

Abstract

Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Keywords

References

  1. Ando, H., Kakuda, K., Fujii, H., Suzuki, K. and Ajiki, T. 2002. Growth and canopy structure of rice plants grown under field conditions as affected by Si application. J. Soil Sci. Plant Nutr. 48:429-432. https://doi.org/10.1080/00380768.2002.10409221
  2. Belanger, R. R., Bowen, P. A., Ehret, D. L. and Menzies, J. G. 1995. Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis. 79:329-336. https://doi.org/10.1094/PD-79-0329
  3. Borel, W., Menzies, J. G. and Belanger, R. R. 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant. Pathol. 66:108-115. https://doi.org/10.1016/j.pmpp.2005.05.006
  4. Bowen, P., Menzies, J., Ehret, D., Samuels, L. and Glass, A. D. M. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hort. Sci. 117:906-912.
  5. Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J. and Zhu, X. 2008. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol. Plant. 134:324-333. https://doi.org/10.1111/j.1399-3054.2008.01140.x
  6. Couch, B. C. and Kohn, L. M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from Mgrisea. Mycologia 94:683-693. https://doi.org/10.2307/3761719
  7. Datnoff, L. E., Raid, R. N., Snyder, G. H. and Jones, D. B. 1991. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Dis. 75:729-732. https://doi.org/10.1094/PD-75-0729
  8. Datnoff, L. E., Snyder, G. H. and Deren, C. W. 1992. Influence of silicon fertilizer grades on blast and brown spot development and yields of rice. Plant Dis. 76:1011-1013. https://doi.org/10.1094/PD-76-1011
  9. Datnoff, L., Deren, C. and Snyder, G. 1997. Silicon fertilization for disease management of rice in Florida. Crop Prot. 16:525-531. https://doi.org/10.1016/S0261-2194(97)00033-1
  10. Datnoff, L., Rodrigues, F. and Seebold, K. 2007. Silicon and plant disease. In: Mineral nutrition and plant disease, ed. by L. E. Datnoff, W. H. Elmer and D. M. Huber, pp. 233-246. The American Phytopathological Society Press, U.S.A.
  11. Elliott, C. and Snyder, G. H. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118-1119. https://doi.org/10.1021/jf00006a024
  12. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91:11-17. https://doi.org/10.1073/pnas.91.1.11
  13. Fawe, A., Abou-Zaid, M., Menzies, J. and Belanger, R. 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396-401. https://doi.org/10.1094/PHYTO.1998.88.5.396
  14. Guevel, M. H., Menzies, J. and Belanger, R. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 119:429-436. https://doi.org/10.1007/s10658-007-9181-1
  15. Hajano, J. U., Pathan, M. A., Rajput, Q. A. and Lodhi, M. A. 2011. Rice blast mycoflora, symptomatology and pathogenicity. Int. J. Agro Vet. Med. Sci. 5:53-63.
  16. Hayasaka, T., Fujii, H. and Ishiguro, K. 2008. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038-1044. https://doi.org/10.1094/PHYTO-98-9-1038
  17. IRRI. 2002. Standard evaluation system for rice (SES). Los Banos, Philippines, 56 pp
  18. Kim, S. G., Kim, K. W., Park, E. W. and Choi, D. 2002. Siliconinduced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095-1103. https://doi.org/10.1094/PHYTO.2002.92.10.1095
  19. Liang, Y., Sun, W., Si, J. and Romheld, V. 2005. Effects of foliarand root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol. 54:678-685. https://doi.org/10.1111/j.1365-3059.2005.01246.x
  20. Ma, J. F. and Takahashi, E. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam, The Netherlands. 281 pp.
  21. Ma, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. J. Soil Sci. Plant Nutr. 50:11-18. https://doi.org/10.1080/00380768.2004.10408447
  22. Marschner, H. 1995. Beneficial mineral elements. In: Mineral Nutrition of Higher Plants, pp. 405-435. Academic Press, San Diego, USA.
  23. Mitani, N., Ma, J. F. and Iwashita, T. 2005. Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol. 46:279-283. https://doi.org/10.1093/pcp/pci018
  24. Rezende, D., Rodrigues, F., Carré-Missio, V., Schurt, D., Kawamura, I. and Korndörfer, G. 2009. Effect of root and foliar applications of silicon on brown spot development in rice. Australas. Plant Path. 38:67-73. https://doi.org/10.1071/AP08080
  25. Rodrigues, F. A., Benhamou, N., Datnoff, L. E., Jones, J. B. and Belanger, R. R. 2003. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535-546. https://doi.org/10.1094/PHYTO.2003.93.5.535
  26. Rodrigues, F. A., Mcnally, D. J., Datnoff, L. E., Jones, J. B., Labbe, C., Benhamou, N., Menzies, J. G. and Belanger, R. R. 2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177-183. https://doi.org/10.1094/PHYTO.2004.94.2.177
  27. Rodrigues, F. A. and Datnoff, L. E. 2005. Silicon and rice disease management. Fitopatol. Bras. 30:457-469. https://doi.org/10.1590/S0100-41582005000500001
  28. Savant, N. K., Snyder, G. H. and Datnoff, L. E. 1996. Silicon management and sustainable rice production. Adv. Agron. 58:151-199. https://doi.org/10.1016/S0065-2113(08)60255-2
  29. Scardaci, S., Webster, R., Greer, C., Hill, J., Williams, J., Mutters, R., Brandon, D., McKenzie, K. and Oster, J. 1997. Rice Blast: A New Disease in California Agronomy Fact Sheet Series, 1:2-5.
  30. Seebold, K. W. 1998. The influence of silicon fertilization on the development and control of blast, caused by Magnaporthe grisea (Hebert) Barr, in upland rice. Ph.D thesis. University of Florida, USA.
  31. Seebold, K., Kucharek, T., Datnoff, L., Correa-Victoria, F. and Marchetti, M. 2001. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology 91:63-69. https://doi.org/10.1094/PHYTO.2001.91.1.63
  32. Tongen, A., Goriely, A. and Tabor, M. 2006. Biomechanical model for appressorial design in Magnaporthe grisea. J. Theor. Biol. 240:1-8. https://doi.org/10.1016/j.jtbi.2005.08.014
  33. Winslow, M. D. 1992. Silicon, disease resistance, and yield of rice genotypes under upland cultural conditions. Crop Sci. 32:1208-1213. https://doi.org/10.2135/cropsci1992.0011183X003200050030x
  34. Yamanaka, S., Takeda, H., Komatsubara, S., Ito, F., Usami, H., Togawa, E. and Yoshino, K. 2009. Structures and physiological functions of silica bodies in the epidermis of rice plants. Appl. Phys. Lett. 95:123-703.
  35. Yoshida, S., Ohnishi, Y. and Kitagishi, K. 1962. Chemical forms, mobility, and deposition of silicon in the rice plant. J. Soil. Sci. Plant Nutr. 8:107-113.
  36. Yoshida, S., Navasero, S. and Ramirez, E. 1969. Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31:48-56. https://doi.org/10.1007/BF01373025
  37. Zanao Junior, L. A. Z., Fontes, R. L. F., Neves, J. C. L., Korndörfer, G. H. and Avila, V. T. 2010. Rice grown in nutrient solution with doses of manganese and silicon. Rev. Bras. Cienc. Solo. 34:1629-1639. https://doi.org/10.1590/S0100-06832010000500016
  38. Zhang, C., Wang, L., Nie, Q., Zhang, W. and Zhang, F. 2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ. Exp. Bot. 62:300-307. https://doi.org/10.1016/j.envexpbot.2007.10.024

Cited by

  1. Silicon's Role in Abiotic and Biotic Plant Stresses vol.55, pp.1, 2017, https://doi.org/10.1146/annurev-phyto-080516-035312
  2. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? vol.120, 2015, https://doi.org/10.1016/j.envexpbot.2015.07.001
  3. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia vol.8, pp.8, 2016, https://doi.org/10.3390/su8070700
  4. Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia vol.40, pp.8, 2017, https://doi.org/10.1080/01904167.2016.1264420
  5. A Review of Silicon in Soils and Plants and Its Role in US Agriculture 2016, https://doi.org/10.1097/SS.0000000000000179
  6. Bio-Fertilizer, Ground Magnesium Limestone and Basalt Applications May Improve Chemical Properties of Malaysian Acid Sulfate Soils and Rice Growth vol.24, pp.6, 2014, https://doi.org/10.1016/S1002-0160(14)60070-9
  7. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain vol.64, pp.19, 2016, https://doi.org/10.1021/acs.jafc.6b01201
  8. The effect of calcium silicate as foliar application on aerobic rice blast disease development pp.1573-8469, 2018, https://doi.org/10.1007/s10658-018-1580-y
  9. The Effects of Foliar Sprays with Different Silicon Compounds vol.7, pp.2, 2018, https://doi.org/10.3390/plants7020045
  10. Rice Blast Disease Recognition Using a Deep Convolutional Neural Network vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-38966-0