• Title/Summary/Keyword: Silica waste

Search Result 176, Processing Time 0.137 seconds

Strength Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 강도 특성)

  • Sung, Chan-Yong;Back, Seung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate the strength properties of polymer concrete using recycled aggre-gate. The compressive strength, splitting tensile strength, flexural strength and pulse velocity of polymer concrete were decreased with increasing the content of recycled aggregate. At the curing age of 7days, the compressive strength was $80.5\~88.3$ MPa, the splitting tensile strength was $9.1\~10.6$ MPa, the flexural strength was $19.2\~21.5$ MPa and the pulse velocity was $3,931\~4,041$ m/s, respectively. Also, the compressive strength, splitting tensile strength, flexural strength and pulse velocity of concrete using recycled fine aggregate were higher than that of the silica sand. Therefore, these recycled aggregate polymer concretes were estimated for high strength concrete without major problem.

Recycling Technique of Nano $TiO_2$-Coated Silica-bead for Waste Water Treatment (나노광촉매가 코팅된 실리카 비드의 재생 연구)

  • Do, Young-Woong;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.874-877
    • /
    • 2009
  • 본 연구에서는 수용액 내의 오염물질 분해를 위하여 개발한 광촉매가 코팅된 실리카 비드의 광분 해반응 사용에 따른 활성저하 문제를 해결하기 위하여 반응에 사용한 비드의 활성을 향상시킬 수 있는 재생 방법에 관한 실험을 수행하였다. 비드의 재생방법으로 표면 세정법을 선택하였으며, 세정액으로는 물(증류수), 계면활성제, 아세톤 등 세정력이 서로 다른 3종의 용액을 사용하였다. 재생 과정은 서로 다른 3종의 세정액으로 반응에 사용하여 활성이 떨어진 비드를 세정한 후, 소성온도를 $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$로 달리하여 30분간 처리하였다. 재생 처리과정은 각 1~3회 반복 수행하였으며, 서로 다른 조건에서 재생된 비드의 활성은 수용액 내의 methylene blue 광분해율로 측정하였다. 연구결과, 재생한 비드의 활성은 아세톤으로 세정한 후, $100^{\circ}C$에서 30분간 소성하였을 때 가장 우수한 것으로 나타났으며, 이러한 기초 연구결과를 토대로 현재보다 효율적인 재생 기술에 관한 연구를 수행 중에 있다.

  • PDF

Standardization for $Cr^{+6}$ analysis in cement and concrete (시멘트 및 콘크리트의 크롬분석 표준화에 관한 연구)

  • Park, Nam-Kyu;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.729-732
    • /
    • 2006
  • Portland cement is presently the most widely used construction material. The process of manufacture of cement consists essentially of grinding the raw materials, mixing them intimately proportions and burning in a rotary kiln at a temperature of up to about $1450^{\circ}C$. Raw materials have used limestone, clay, silica, and iron oxide and fuel have used bituminous coal. Recently, A standpoint of the recycling of material resources, the production of cement use of industrial waste and residual products. Therefore, the final product of cement were included heavy metals such as $Cr^{+6}$ and Pb. The purpose of this study is standardization for $Cr^{+6}$ analysis in cement and concrete. From the comparative study of the examination method of $Cr^{+6}$ analysis, Japan cement association standard of $Cr^{+6}$ analysis is most suitable for the real state of affairs in korea.

  • PDF

Removal of Impurities from Waste Pickling Acid in Ironmaking Industry (철강산업발생 폐산세액 재활용을 위한 불순물 제거 연구)

  • 손진군;변태봉;이재영;김대영
    • Resources Recycling
    • /
    • v.5 no.2
    • /
    • pp.57-62
    • /
    • 1996
  • The regeneration of wastc piddlng acid from ironmaking industry produces Iron oxides as by products which are used for pigments and raw matcrial of ferrite. Thc impurilies level of iron axides for ferrile arc strictly regalated. Filtrat~on, adsorption medw technique, Fe leaching and ncutralizaiion wcre tried in order to remove silica impurities in the wasb pickling acid solution.

  • PDF

Cost-Effective Modular Electroeionization (EDI)

  • Tessier, David F.;Haas, William E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.143-158
    • /
    • 1997
  • Electrochemical deionization (EDI) offers continuous demineralization at higher water recovery rates (>90%), compared with mixed bed ion exchange, and without the use of chemical regenerants and the associated production of saline waste water. Although EDI technology has been used in some power generation applications, its wider application requires the satisfactory resolution of outstanding capital cost and performance issues. This paper reports on the field evaluation of a new cost-effective EDI technology in a power generation application. The E-Cell System$^{TM}$, which became commercially available in the fourth quarter of 1996, consists of a rugged, modular system, based on a new high-performance EDI stack. Starting in May 1996, a 100 gpm modular EDI pilot system, rated for operation at 100 psi, was evaluated at the TVA Brown's Ferry Nuclear Plant. The feed consisted of Reverse Osmosis (RO) permeate with a conductivity of 4-7 $\mu$S/cm. The pilot system reliably produced 17.8-18.0 M$\Omega$.cm water under design operating conditions, independent. Silica levels were reduced from ca. 50 ppb to 4 ppb, while TOC levels were reduced from ca. 120 ppb to 30 ppb.

  • PDF

The Characteristics of Manufacture Filter Media for Water Treatment Using Mixture Response with Ash and Food Waste (연소재 및 식품폐기물의 혼합 반응에 따른 수처리 여과재 제조 특성)

  • Park, Seung-Do;Lee, Won-Ho;Lee, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2018
  • The porosity formation by the addition of additives was found to be the highest in the case of aluminum powder 3% and $Ca(OH)_2$ 2% under the condition that strength was maintained. The optimum mixing ratio of the binder was shown to be the most effective at (Ash+Food waste+clay):(water glass+colloidal silica) 7:3, and the temperature response is most economical and effective at $1,000^{\circ}C$. The optimal mixing ratio is the strength in 30% of ash, 30% of clay and 10% of food waste, which is the effective in non-point pollution water treatment. Filter media produced under optimal mixing conditions were analyzed as $SiO_2$ 65.8%, density $1.4g/cm^3$, porosity 25.6%, pH 9.8, and no hazardous substances were detected. As a result of the filtration of the water treatment, the mean concentration of the filtered SS was $14.06mg/{\ell}$, and the removal efficiency of SS was 90%, the recovery rate of the reversal is 97.1%. This enables the development of filter media considering economic efficiency and efficiency as well as the utilization of waste resources, enabling high value added of waste resources.

Development of ceramic glazes utilizing wasted porcelains (폐도자기를 활용한 도자기 유약 개발)

  • Lee, Jea-Il;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.87-91
    • /
    • 2011
  • The purpose of this study is to develop ceramic glazes for the pottery production by utilizing wasted white porcelain, celadon porcelain and bone china thrown away from the areas of Icheon and Yeoju. Most of Korean pottery manufacturers are located in the both areas. According to the XRF analysis, the wasted white porcelain contains over 67 % of silica. It is enough to make a transparent glaze without adding silica. The wasted celadon porcelain contains much $Fe_2O_3$, which is suitable for producing a celadon glaze. The wasted bone china contains 22 % of $P_2O_5$, which is suitable for making a milky white bone china glaze. As a result, it is expected that production of pottery glaze using the wasted porcelains will reduce pollution problems comes from the landfill, and obtain economic effects in terms of resources recycling. It is also expected to be utilized as alternative materials of imported ones.

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Experimental Study of Thermal Conductivity for Glass Wool by Inserted Dissimilar Materials based on Structural Composites (구조 복합재료 기반 이종재료 첨가시의 유리섬유의 열적 성능 평가에 대한 실험적 연구)

  • Bae, Jin-Ho;Oh, Jong-Ho;Byun, Jun-Seok;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.448-455
    • /
    • 2018
  • Glass wool is an eco-friendly materials that is manufactured through a continuous process by processing waste glass. This materials is low cost compared with another materials and has excellent thermal conductivity. For this reason, glass wool is installed as insulation system for LNG carriers and as insulation of building wall as well as various industries. The mechanism of insulation of glass wool is the conduction of the wool itself and convection by space between fibers. Therefore, in order to develop the enhanced thermal conductivity of glass wool is necessary to reduce its own conduction or to insert additional material after manufacturing as well as prevent convection. In this respect, many researchers have been actively studying to decrease thermal conductivity of polyurethane foam using by inserted glass wool or change the chemical component of glass wool. However, many research are aiming reduction of glass wool itself. This study focus on post-processing and inserted different materials; silica-aerogel, kevlar fiber 1mm, 6mm and glass bubble. Experimental results show that the thermal conductivity almost decreases with the addiction of glass bubble and silica aerogel.

Advances of Post-combustion Carbon Capture Technology by Dry Sorbent (건식흡수제 이용 연소배가스 이산화탄소 포집기술)

  • Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.140-146
    • /
    • 2010
  • This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent $CO_2$ capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing $CO_2$ from real coal flue gas as well as sorbents improving sorption capacity to decrease total $CO_2$ capture cost. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.