• 제목/요약/키워드: Silica film

검색결과 287건 처리시간 0.029초

FHD 공정으로 제조한 실리카 막의 저온 고밀화 (Low Temperature Consolidation of Silica Film by Flame Hydrolysis Deposition)

  • 김태홍;윤기현
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.278-285
    • /
    • 2002
  • 화염가수분해증착(FHD : Flame Hydrolysis Deposition)공정으로 평면형 광수동소자를 구현하기 위한 1050$^{\circ}C$의 저온에서 실리카(silica)막을 형성하였다. 본 연구는 실리카 막을 저온에서 형성하기 위하여 B, P 의 함량을 증가시키면서 고밀화 온도 변화 및 고밀화 분위기에 따른 미세구조의 변화 등 고밀화 영향과 광학적 특성을 관찰하였다. He 분위기에서 고밀화한 경우 적정 고밀화 온도를 1050$^{\circ}C$까지 낮출 수 있었고, 그 결과 표면조도(Surface Roughness)가 5.6nm인 균질한 실리카 막을 저온에서 형성할 수 있었다.

항균성물질이 함유된 Silica LDPE필름의 항균효과 및 식품 저장성 (Antimicrobial Activity and Food Storage of LDPE Silica Film Containing Antimicrodial Compounds)

  • 김현수;성림식;이인선
    • KSBB Journal
    • /
    • 제17권4호
    • /
    • pp.350-356
    • /
    • 2002
  • 다양한 식품의 미생물에 의한 변패를 억제하고 저장성을 높일수 있는 포장필름을 개발하기 위하여, 미생물이 생산하는 천연 항균성 물질을 흡착시킨 silica에 항균제로서 benzoic acid 및 일본산 항균성 필름 첨가제인 JP를 공동 첨가하여 항균성 LDPE 필름을 제조하였다. 천연 항균제로는 methanol 자화 방선균 MO-16과 MO-17이 생산한 항균제를 사용하였으며, 이 물질은 121$^{\circ}C$에서 5분간 열처리시에도 항균력이 유지되는 내열성이 확인되었다. 제조한 silica LDPE 필름의 미생물생육 억제효과를 검토한 결과 조분쇄한 돈육의 경우 포장하여 실온 및 4$^{\circ}C$에서 보존시 시판필름에 비해 미생물생육억제효과가 우수하였다. 고체배지에 제조필름을 첨가하여 E. coli 에 대한 항균효과를 검토한 결과 첨가량에 따라 항균효과가 우수한 것이 입증되었다. 제조필름으로 포장한 4종류의 식품에 대한 저장성을 검토한 결과 시판필름에 비해 저장성이 우수한 것이 확인되었으며 특히 양송이 및 토마토에 대한저장효과가 우수하였다.

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • 제25권2호
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

나노 세리아 입자가 표면 코팅된 콜로이달 실리카 슬러리의 Oxide film 연마특성 (Polishing of Oxide film by colloidal silica coated with nano ceria)

  • 김환철;이승호;김대성;임형미
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.35-37
    • /
    • 2005
  • 100, 200nm 크기의 colloidal silica 각각에 나노 ceria 입자를 수열합성법으로 코팅하였다. Colloidal silica 입자에 ceria를 코팅 시 slurry의 pH조절과 수열처리에 이용하여 silica에 ceria가 코팅됨을 TEM과 zeta-potential을 이용하여 확인하였다. 연마 슬러리의 분산 안정성과 연마효율을 높이기 위하여 슬러리의 pH 는 9로 하였으며, 이때의 zeta-potential 값은 -25 mV이었다. 1 wt%로 제조된 연마슬러리를 이용하여, 4 inch $SiO_2$, $Si_3N_4$ wafer를 압력변화에 따른 연마특성을 관찰 하였다. Ceria coated colloidal silica 100 nm, 200 nm와 commercial한 $CeO_2$입자를 연마압력 6 psi로 oxide film을 연마한 결과 연마율이 각각 2490 ${\AA}/min$, 4200 ${\AA}/min$, 4300 ${\AA}/min$으로 측정되었다. 또한 $SiO_2$, $Si_3N_4$ film의 6 psi압력에서 ceria coated colloidal silica 100 nm, 200 nm와 commercial 한 $CeO_2$입자의 선택비는 3, 3.8, 6.7 이었다. 입자크기가 클수록 연마율이 높으며, Preston equation을 따라 연마 압력과 연마율이 비례하였다.

  • PDF

실리카 입자의 형상과 표면 특성이 산화막 CMP에 미치는 영향 (Effect of shape and surface properties of hydrothermaled silica particles in chemical mechanical planarization of oxide film)

  • 정정환;임형미;김대성;백운규;이승호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.161-161
    • /
    • 2008
  • The oxide film of silicon wafer has been mainly polished by fumed silica, colloidal silica or ceria slurry. Because colloidal silica slurry is uniform and highly dispersed composed of spherical shape particles, by which the oxide film polished remains to be less scratched in finishing polishing process. Even though the uniformity and spherical shape is advantage for reducing the scratch, it may also be the factor to decrease the removal rate. We have studied the correlation of silica abrasive particles and CMP characteristics by varying pH, down force, and table rotation rate in polishing. It was found that the CMP polishing is dependent on the morphology, aggregation, and the surface property of the silica particles.

  • PDF

수열처리에 의한 세리아가 코팅된 실리카 연마재의 제조 및 Oxide Film의 연마특성 (Preparation of Ceria Coated Silica Abrasive by Hydrothermal Treatment and Polishing Rate on Oxide Film)

  • 유대선;김대성;이승호
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.818-823
    • /
    • 2005
  • Sub-micron colloidal silica particles coated with nano-sized ceria were prepared by mixing of its silica and cerium salts hydrolysis, and modified by hydrothermal reaction. By using the slurries with and without hydrothermal modification containing above particles, oxide film coated on silicon wafer was polished. The modified slurries had higher polish rate due to increase of ceria fraction to silica through hydrothermal reaction. They revealed higher stability in wide range of pH $2\~10$ than ceria coated silica slurries without its modification.

열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성 (Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.182-189
    • /
    • 2006
  • In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.

Effect of Particle Size of Ceria Coated Silica and Polishing Pressure on Chemical Mechanical Polishing of Oxide Film

  • Kim, Hwan-Chul;Lim, Hyung-Mi;Kim, Dae-Sung;Lee, Seung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.167-172
    • /
    • 2006
  • Submicron colloidal silica coated with ceria were prepared by mixing of silica and nano ceria particles and modified by hydrothermal reaction. The polishing efficiency of the ceria coated silica slurry was tested over oxide film on silicon wafer. By changing the polishing pressure in the range of $140{\sim}420g/cm^2$ with the ceria coated silica slurries in $100{\sim}300nm$, rates, WIWNU and friction force were measured. The removal rate was in the order of 200, 100, and 300 nm size silica coated with ceria. It was known that the smaller particle size gives the higher removal rate with higher contact area in Cu slurry. In the case of oxide film, the indentation volume as well as contact area gives effect on the removal rate depending on the size of abrasives. The indentation volume increase with the size of abrasive particles, which results to higher removal rate. The highest removal rate in 200 nm silica core coated with ceria is discussed as proper combination of indentation and contact area effect.

Ambient Pressure Dried Silica Aerogel Thin Film from Water Glass

  • Cha, Young-Chul;Yoon, Jong-Seol;Lee, Jun;Hwang, Hae-Jin;Moon, Ji-Woong
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.87-89
    • /
    • 2008
  • A nano structured silica aerogel thin film was manufactured from inexpensive sodium silicate (water glass) using an ambient pressure drying method. High purity silicic sol was prepared by passing a water glass solution through an ion exchange resin, and the gel films were prepared on a modified glass substrate via dip coating. The dip coating conditions, such as coating time and solvent, were optimized. The optical and physical properties of the obtained silica aerogel thin film were characterized using a UV-visable spectrometer and a scanning electron microscope.