나노 세리아 입자가 포먼 핰린 다실리스 산리아의

Oxide film 연마특성

김환철, 이승호, 김대성, 박명

요접(세라믹)기술원

Korea Institute of Ceramic ENG. & Tech.

Polishing of Oxide film by colloidal silica coated with nano ceria

Hwan Chul Kim, Seung Ho Lee, Dae sung Kim, and Hyung Mi Lim

1. 서론

반도체의 고 집적도화에 따라 폭연층약의 형성 기술은 연마공정중 공정을 필요로 하고 있다.[1] 폭연막의 연마는 기계화학적 연마를 이용하는 CMP(Chemical Mechanical Planarization)기술이 많이 활용되며, 폭연막으로는 SiO₂ 그 리고 확산 방지막으로 Si₃N₄가 대상이 된다.[2] SiO₂에 대한 연마막은 넓이고 Si₃N₄의 연마막은 늘추는 선체적인 연마특성이 필요하며, 연마재로는 CeO₂가 주로 사용된다.

CeO₂는 반도체 CMP 및 glass의 abrasive로 사용되어 왔다. CeO₂의 다른 연마재(Al₂O₃, Cr₂O₃, La₂O₃, Si₃N₄, SnO₂, TiO₂, T₃O₃)보다 연마막은 높고,[3] 경도는 넓어 scratches의 발생이 적은 장점이 있다.

이러한 연마재들과 더불어 흡입 혹은 복합입자의 연마 효과를 알아보기 위하여 여러 가지 형상 및 조성의 SiO₂/CeO₂, SiO₂+CeO₂, Fe₂O₃/SiO₂/CeO₂, Fe₂O₃+CeO₂ composite 혹은 흡입 연마재의 연마특성에 대한 연구가 있었다.[5-7]

본 논문은 CeO₂가 코팅된 SiO₂의 연마특성을 조사하고 자 수열합성법을 이용하여 100, 200 nm 크기의 colloidal silica 위에 ceria를 코팅한 연마 슬러리와 Calcination 처리를 거친 commercial CeO₂ 슬러리를 비교 연마하였다. 연마는 4 inch wafer의 SiO₂ film과 Si₃N₄ film에 코팅된 wafer를 이용하여 연마 압력에 따른 연마특성과 선택비를 조사하였다.

2. 실험 방법

2.1 실험

100, 200 nm 크기의 Colloidal Silica(日本工業化學株式會社, MP-(1020, 2040), 30wt%)에 Nano Ceria(Nycol, 10nm 20wt%)를 colloidal silica : nano ceria = 10 : 3의 중량비로 혼합하여 코팅하였다. 전기영동장치(Photol, ELS-8000)를 이용하여 colloidal silica와 ceria의 zeta-potential을 측정하여 하나의 응용을 하는 양극을 가지는 pH영역을 조사하여 silica와 ceria의 혼합슬러리 pH를 IN-KOH와 IN-HNO₃를 이용하여 pH4로 조절하였다. 혼합된 사료는 95℃에서 2hr 동안 Aging을 거쳐 다시 pH를 조절하여 180℃에서 2hr 동안 수열처리 하였다. 수열처리 후 낮은 용해도와 미반응 ceria를 제거하기 위하여 3회 정상분리하여 ion conductivity가 10μS 이하로 조절하여 불순분을 제거하였다. 불순분이 제거된 ceria coated colloidal silica 슬러리를 고형도 10%, 1%의 슬러리로 조성하였으며, 분산안정성과 연마막의 높이를 위하여 IN-KOH를 이용하여 pH 9로 조절하였다.[8] 입자크기 및 형상은 TEM(JEM-2000EX, Joel)로 평가하였고, zeta-potential(Photol, ELS-8000)을 이용하여 pH에 따른 zeta-potential과 zeta-particle size analysis (Photol, ELS-8000)를 이용하여 입자크기를 조사하였다.

연마실험은 100, 200 nm크기의 colloidal silica 위에 Ceria 코팅된 슬러리와 연마특성을 비교하기 위하여 CeO₂단독으로 된 kommerical calcined ceria와 슬러리를 이용하여 연마특성을 비교 실험하였다. 연마기(G&P tech)의 Head의 Table Speed를 각각 50rpm, 슬러리 공급량은 150ml/min으로 고정하고, Pad는 IC-1400을 사용하여 연마실험을 하였다. 각 연마 5 min 8 inch 다이아몬드 conditioner를 이용하여 1분 간 Pad의 표면 개질 후 4 inch 크기의 SiO₂ film과 Si₃N₄ film에 deposit된 wafer를 연마하기 압력 2, 4, 6 ps으로 변화 시켜 연마를 하였으며, 연마 전후의 두께는 Nano-Spec를 이용하여 Removal Rate(RR)를 측정하였다.
3. 결과 및 고찰

3.1. 코팅입자 특성

코팅 전후의 입자크기와 생성물은 Table 1에 나타내었 다. 수열처리 후 코팅 입자의 크기는 모두 증가하였다. 200 nm colloidal silica가 100 nm silica 보다 입자 크기가 더 크게 증가한 것은 수열처리 중에 크기가 작은 100 nm colloidal silica의 발생도가 컸기 때문이다. silica와 ceria 혹은 silica-beria-silica 입자간의 응집이 더 많이 일어난 것으로 보인다.

Table 1. Average particle size analysis.

<table>
<thead>
<tr>
<th></th>
<th>SiO₂ (Core colloidal silica)</th>
<th>SiO₂/CeO₂ (After Hydrothermal)</th>
<th>CeO₂ (Calcined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
<td>100S</td>
<td>200S</td>
<td>100SC</td>
</tr>
<tr>
<td>Average Particle Size(nm)</td>
<td>94</td>
<td>160</td>
<td>143</td>
</tr>
</tbody>
</table>

![Fig.1. Particle size distribution of (a) 100S (b) 100SC (c) 200S (d) 200SC (e) CeO₂.](image)

Fig.2. Zeta-potential curve as a function of pH.

![Fig.2. Zeta-potential curve as a function of pH.](image)

Fig.3. X-ray diffraction pattern of (a) CeO₂ (ICPDS# 43-1002) (b) ceria coated colloidal silica before hydrothermal (c) 100SC (d) 200SC.

Fig.4은 수열처리 전후의 코팅 입자와 CeO₂의 TEM 사진을 나타내었다. (a)의 CeO₂입자는 블루치한 형상을 가지 고 있으며, 주위에 분산에도 보이는 유기물들이 관찰 되었다. Fig.4의 (b)는 수열처리 전의 200 nm 크기의 colloidal silica 위에 ceria를 코팅시킨 입자의 TEM 이미지이다. 수열합성 전의 속성반응으로도 colloidal silica 표면에 ceria가 잘 코팅되어 있는 것을 관찰 할 수 있었고, 주위에 실리카 표면에 흡착하지 않은 free ceria가 많이 존재하였 다. Fig.4의 (c) 100SC의 (d) 200SC는 수열처리 후 코팅 입자들이다. Ceria의 코팅 두께가 수열처리 전보다 다소 증가한 것으로 관찰 된 것은 수열처리 동안 free nano ceria 입자가 세리아 입자 혹은 실리카 입자와 반응하여 흡착 결합한 것으로 보인다.
3.2. 연마성능

CeO₂입자의 ceria coated colloidal silica의 연마압력에 따른 연마율과 선택비를 Fig. 5에 나타내었다. Oxide film에서 4 psi까지의 연마율은 세가지 입자 모두 1000 Å/min으로 비슷하였으나, 6 psi의 압력에서는 100SC는 연마율이 2500 Å/min의 낮은 연마율을 기록하였다. 그러나 200SC와 CeO₂의 연마율은 4200-4300 Å/min으로 높게 증가하였다. 이러한 이유는 6 psi에서는 크기가 큰 입자가 압력에 의해 Oxide 층의 내부로 침투하는 indentation작용으로 연마 효과가 크게 나타난 것으로 예상된다. 연마율은 SiO₂ film과 Si₃N₄의 film 모두에서 연마 압력과 연마율이 비례관계의 결과로 보아 전형적인 Preston equation을 따름을 알 수 있었다.

참가자에 들어 있지 않은 100SC, 200SC는 각 압력에서 3-4 정도의 선택비를 가지며, 입자의 분산을 위하여 분산제를 첨가한 CeO₂ 연마제는 2 psi에서 16의 선택비를 가졌다. 이는 CeO₂ 입자의 분산제가 2 psi에서 Si₃N₄에 충착하여 연마율은 떨어뜨려 선택비를 향상시킨 것으로 사료된다.

Fig. 5. Polishing result of (a) Si₃N₄ film, (b) SiO₂ film and (c) selectivity for SiO₂/Si₃N₄ film.

4. 결론

100 nm, 200 nm 크기의 colloidal silica위에 나노 ceria를 pH 조절과 수용 형성법을 이용하여 균일하고 강한 결합을 가진 입자를 합성하였다. Ceria 코팅된 입자의 IEP는 6 이었다. 수상성성 후 결정성과 결정성의 변화는 없었다. 연마 입자의 크기가 클수록 연마율은 높게 나타났으며, 4 psi에서 6 psi로 압력이 증가함에 따라 150 nm이상의 입자에서 연마율은 급격히 향상되었으며, 이는 입자입자 크기에 의한 indentation 영향에 의한 것으로 예상된다. 연마 압력과 연마율이 비례관계는 전형적인 Preston equation을 따름을 알 수 있었다.

참고 문헌