• Title/Summary/Keyword: Silica$SiO_2$

Search Result 665, Processing Time 0.027 seconds

Preparation of Ultrafine Silica Powders by Chemical Vapor Deposition Process (기상반응(CVD)법 의한 실리카 미분말의 제조)

  • Choi, Eun-Young;Lee, Yoon-Bok;Shin, Dong-Woo;Kim, Kang-Ho
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.850-855
    • /
    • 2002
  • Silica powders were prepared from $SiCl_4$-$H_2$O system by chemical vapor deposition process, and investigated on size control of the products with reaction conditions. The products were amorphous and nearly spherical particles with 130nm~50nm in size. The size distribution became narrow with the increase of [$H_2$O]/[SiCl$_4$] concentration ratio. The particle size decreased with the increase of reaction temperature, [$H_2$O]/[SiCl$_4$] concentration ratio and total flow rate. The specific surface area measured by BET method was about three times larger than that of electron microscope method.

Synthesis and Characterization of CoFe2O4/SiO2 using Cobalt Precursors from Recycling Waste Cemented Carbide (폐 초경합금에서 추출된 Co를 이용한 CoFe2O4/SiO2 합성 및 특성평가)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Yoo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.454-457
    • /
    • 2011
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$, particles using recycled $Co_3O_4$ and their surface coating with silica using micro emulsion method. Firstly, the $Co_3O_4$ powders were separated from waste cemented carbide with acid-base chemical treatment. The cobalt ferrite nanoparticles with the size 10 nm are prepared by thermal decomposition method using recycled $Co_3O_4$. $SiO_2$ was coated onto the $CoFe_2O_4$ particles by the micro-emulsion method. The $SiO_2$-coated $CoFe_2O_4$ particles were studied their physical properties and characterized by X-ray diffraction (XRD), high resolution-transmission electron microscopy (TEM) analysis and CIE Lab value.

Thermal Instability of La0.6Sr0.4MnO3 Thin Films on Fused Silica

  • Sun, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.482-485
    • /
    • 2011
  • $La_{0.6}Sr_{0.4}MnO_3$ (LSMO) thin films, which are known as colossal magnetoresistance materials, were prepared on fused silica thin films by conventional RF magnetron sputtering, and the interfacial reactions between them were investigated by rapid thermal processing. Various analyses, namely, X-ray diffraction, transmission electron microscopy combined with energy adispersive X-ray spectrometry, and secondary ion mass spectrometry, were performed to explain the mechanism of the interfacial reactions. In the case of an LSMO film annealed at $800^{\circ}C$, the layer distinction against the underplayed $SiO_2$ was well preserved. However, when the annealing temperature was raised to $900^{\circ}C$, interdiffusion and interreaction occurred. Most of the $SiO_2$ and part of the LSMO became amorphous silicate that incorporated La, Sr, and Mn and contained a lot of bubbles. When the annealing temperature was raised to $950^{\circ}C$, the whole stack became an amorphous silicate layer with expanded bubbles. The thermal instability of LSMO on fused silica should be an important consideration when LSMO is integrated into Si-based solid-state devices.

Effect of Surface Treatment Condition of Aminosilane on Ethylene Polymerization of Supported Metallocene (아미노실란 표면 처리 조건이 담지메탈로센 촉매의 에틸렌 중합에 미치는 영향)

  • Lee, Sang Yun;Lee, Jeong Suk;Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.397-400
    • /
    • 2015
  • The effects of surface treatment method of unreacted N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS), $N^1$-(3-trimethoxysilylpropyl)diethylenetriamine (3NS), and 3-cyanopropyltriethoxysilane (1NCy) after grafting on the surface of silica and of the surface treatment temperature on ethylene polymerization were investigated. The Zr content of supported catalyst employing filtering method was higher than that of washing method, and the activities of supported catalysts prepared by washing method were higher than those of filtering methods significantly. Regardless of surface treatment methods the activities were in order by $SiO_2/2NS/(n-BuCp)_2ZrCl_2>SiO_2/1NCy/(n-BuCp)_2ZrCl_2>SiO_2/3NS/(n-BuCp)_2ZrCl_2$. The ethylene polymerization activity was increased as the surface treatment temperature of aminosilane on silica increased.

Confined Pt and CoFe2O4 Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity

  • Kang, Dong-Hyeon;Eum, Min-Sik;Lee, Byeong-No;Bae, Tae-Sung;Lee, Kyu-Reon;Lim, Heung-Bin;Hur, Nam-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3712-3719
    • /
    • 2011
  • Confined Pt and $CoFe_2O_4$ nanoparticles (NPs) in a mesoporous core/shell silica microsphere, Pt-$CoFe_2O_4$@meso-$SiO_2$, were prepared using a bi-functional linker molecule. A large number of Pt NPs in Pt-$CoFe_2O_4$@meso-$SiO_2$, ranging from 5 to 8 nm, are embedded into the shell and some of them are in close contact with $CoFe_2O_4$ NPs. The hydrogenation of cyclohexene over the Pt-$CoFe_2O_4$@meso-$SiO_2$ microsphere at $25^{\circ}C$ and 1 atm of $H_2$ yields cyclohexane as a major product. In addition, it gives oxygenated products. Control experiments with $^{18}O$-labelled water and acetone suggest that surface-bound oxygen atoms in $CoFe_2O_4$ are associated with the formation of the oxygenated products. This oxidation reaction is operative only if $CoFe_2O_4$ and Pt NPs are in close contact. The Pt-$CoFe_2O_4$@meso-$SiO_2$ catalyst is separated simply by a magnet, which can be re-used without affecting the catalytic efficiency.

Preparation of Silicon Oxide Thin Film using Hydrofluorosilicic Acid (규불화수소산을 이용한 실리콘 산화물 필름 제조에 관한 연구)

  • Park, Eun-Hui;Jeong, Heung-Ho;Im, Heon-Seong;Hong, Seong-Su;No, Jae-Seong
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.414-418
    • /
    • 1999
  • Typical metal oxide thin films having optical and electrical properties are widely used as inorganic functional materials. Liquid phase deposition(LPD) method, a new low temperature process, has been developed for the several advantages of no vacuum system, low cost, high throughput, and low processing temperature(<$50^{\circ}C$). Silica powder was added to 40wt% hydrofluoro-silicic acid($H_2$SiF\ulcorner) to obtain an immersing solution of silica-saturated hydrofluorosilicic acid solution. Boric acid solution was continuously added in the range from 0 to 0.05M to prepare supersaturated hydrofluorosilicic acid solution. LPD $SiL_2$film was formed with the variation of added amount of $H_2$O. The SiO$_2$thin film could be prepared from hydrofluorosilicic acid by LPD method. The thickness of LPD $_SiO2$film was influenced by the boric acid concentration and added amount of $H_2$O. Silicon in thin film existed as SiF\ulcorner by Raman spectrum.

  • PDF

Silica Sulfuric Acid/Wet $SIO_2$as a Novel System for the Deprotection of Acetals by Using Microwave Irradiation under Solvent Free Conditions (무용매 조건하에서 황산/젖은 $SIO_2$와 마이크로웨이브를 이용한 아세탈의 새로운 탈보호기 방)

  • BiBi Fathemeh, Mirjalili; Mohammad Ali, Zolfigol;Abdolhamid, Bamoniri
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.546-548
    • /
    • 2001
  • Neat chlorosulfonic acid reacts with silica gel to give silica sulfuric acid in which sulfuric acid is immobilized on the surface of silica gel via covalent bond. A combination of silica sulfuric acid and wet SiO$_2$ was used as an effective deacetalizating agent for the conversion of acetals to their corresponding carbonyl derivatives by using microwave irradiation under solvent free conditions.

  • PDF

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Synthesis and Electrochemical Characterization of Silica-Manganese Oxide with a Core-shell Structure and Various Oxidation States

  • Ryu, Seong-Hyeon;Hwang, Seung-Gi;Yun, Su-Ryeon;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2683-2688
    • /
    • 2011
  • Silica-manganese oxides with a core-shell structure were synthesized via precipitation of manganese oxides on the $SiO_2$ core while varying the concentration of a precipitation agent. Elemental analysis, crystalline property investigation, and morphology observations using low- and high-resolution electron microscopes were applied to the synthesized silica-manganese oxides with the core-shell structure. As the concentration of the precipitating agent increased, the manganese oxide shells around the $SiO_2$ core sequentially appeared as $Mn_3O_4$ particles, $Mn_2O_3+Mn_3O_4$ thin layers, and ${\alpha}-MnO_2$ urchin-like phases. The prepared samples were assembled as electrodes in a supercapacitor with 0.1 M $Na_2SO_4$ electrolyte, and their electrochemical properties were examined using cyclic voltammetry and charge-discharge cycling. The maximum specific capacitance obtained was 197 F $g^{-1}$ for the $SiO_2-MnO_2$ electrode due to the higher electronic conductivity of the $MnO_2$ shell compared to those of the $Mn_2O_3$ and $Mn_3O_4$ phases.

Synthesis of $(ZrSiO_4)$ Powders by the Sol-Gel Process -Effect of the Milling- (졸-겔법에 의한 지르콘$(ZrSiO_4)$ 분말 합성 -재분쇄(Milling)에 대한 효과-)

  • 신용철;신대용;한상목;남인탁
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.853-857
    • /
    • 1995
  • ZrSiO4 powders were prepared from partially hydrolyzed solution of Si(OC2H5)4 and ZrOCl2.8H2O solution by the sol-gel method and formation rate of ZrSiO4 on the reaction parameter was investigated. In order to prepare homogeneous ZrSiO4 precursor gels, the H2O/Si(OC2H5)4 molar ratio of about 2, the pH of the ZrOCl2.8H2O solution fo about 4 and stirring time of the mixed solutions of about 2 hrs were appropriate. Formation of temperature of ZrSiO4 reduced about 15$0^{\circ}C$ by milling and formation of ZrSiO4 at 1300~135$0^{\circ}C$ showed an accelerative increase through the hedvall effect by silica.

  • PDF