• Title/Summary/Keyword: Signed-DIgit

Search Result 69, Processing Time 0.029 seconds

A Modified SaA Architecture for the Implementation of a Multiplierless Programmable FIR Filter for Medical Ultrasound Signal Processing (곱셈기가 제거된 의료 초음파 신호처리용 프로그래머블 FIR 필터 구현을 위한 수정된 SaA 구조)

  • Han, Ho-San;Song, Jae-Hee;Kim, Hak-Hyun;Goh, Bang-Young;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.423-428
    • /
    • 2007
  • Programmable FIR filters are used in various signal processing tasks in medical ultrasound imaging, which are one of the major factors increasing hardware complexity. A widely used method to reduce the hardware complexity of a programmable FIR filter is to encode the filter coefficients in the canonic signed digit (CSD) format to minimize the number of nonzero digits (NZD) so that the multipliers for each filter coefficients can be replaced with fixed shifters and programmable multiplexers (PM). In this paper, a new structure for programmable FIR filters with a improved frequency response and a reduced hardware complexity compared to the conventional shift-and-add architecture using PM is proposed for implementing a very small portable ultrasound scanner. The CSD codes are optimized such that there exists at least one common nonzero digit between neighboring coefficients. Such common digits are then implemented with the same shifters. For comparison, synthesisable VHDL models for programmable FIR filters are developed based on the proposed and the conventional architectures. When these filters have the same hardware complexity, pass-band ana stop-band ripples of the proposed filter are lower than those of the conventional filter by about $0.01{\sim}0.19dB$ and by about $5{\sim}10dB$, respectively. For the same filter performance, the hardware complexity of the proposed architecture is reduced by more than 20% compare to the conventional SaA architecture.

A Novel Redundant Binary Montgomery Multiplier and Hardware Architecture (새로운 잉여 이진 Montgomery 곱셈기와 하드웨어 구조)

  • Lim Dae-Sung;Chang Nam-Su;Ji Sung-Yeon;Kim Sung-Kyoung;Lee Sang-Jin;Koo Bon-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2006
  • RSA cryptosystem is of great use in systems such as IC card, mobile system, WPKI, electronic cash, SET, SSL and so on. RSA is performed through modular exponentiation. It is well known that the Montgomery multiplier is efficient in general. The critical path delay of the Montgomery multiplier depends on an addition of three operands, the problem that is taken over carry-propagation makes big influence at an efficiency of Montgomery Multiplier. Recently, the use of the Carry Save Adder(CSA) which has no carry propagation has worked McIvor et al. proposed a couple of Montgomery multiplication for an ideal exponentiation, the one and the other are made of 3 steps and 2 steps of CSA respectively. The latter one is more efficient than the first one in terms of the time complexity. In this paper, for faster operation than the latter one we use binary signed-digit(SD) number system which has no carry-propagation. We propose a new redundant binary adder(RBA) that performs the addition between two binary SD numbers and apply to Montgomery multiplier. Instead of the binary SD addition rule using in existing RBAs, we propose a new addition rule. And, we construct and simulate to the proposed adder using gates provided from SAMSUNG STD130 $0.18{\mu}m$ 1.8V CMOS Standard Cell Library. The result is faster by a minimum 12.46% in terms of the time complexity than McIvor's 2 method and existing RBAs.

Low-Power Decimation Filter Using Approximate Processing with Control of Error in CSD Representation (CSD 표현의 오차를 이용한 Approximate Processing과 이를 이용한 저전력 Decimation Filter의 설계)

  • 양영모;김영우;김수원
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.236-239
    • /
    • 1999
  • This paper describes a low-power design of decimation filter. To reduce power consumption, an approximate processing method which controls the error in canonic signed digit(CSD) coefficients is proposed. The CSD representation reduces the number of operations by representing multiplications with add and shift operations. The proposed method further reduces the number of operations by controlling the error of CSD coefficient. Processor type architecture is used to implement the proposed method. Simulation result shows that the number of operations is reduced to 56%, 35% and 10% at each approximated filter level.

  • PDF

Design of a Low Power Digital Filter Using Variable Canonic Signed Digit Coefficients (가변 CSD 계수를 이용한 저전력 디지털 필터의 설계)

  • Kim, Yeong-U;Yu, Jae-Taek;Kim, Su-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.7
    • /
    • pp.455-463
    • /
    • 2001
  • In this Paper, an approximate processing method is proposed and tested. The proposed method uses variable CSD (VCSD) coefficients which approximate filter stopband attenuation by controlling the precision of the CSD coefficient sets. A decimation filter for Audio Codec '97 specifications has been designed having processor architecture that consists of program/data memory, arithmetic unit, energy/level decision, and sinc filter blocks, and fabricated with 0.6${\mu}{\textrm}{m}$ CMOS sea-of-gate technology. For the combined two halfband FIR filters in decimation filter, the number of addition operations were reduced to 63.5%, 35.7%, and 13.9%, compared to worst-case which is not an adaptive one. Experimental results show that the total power reduction rate of the filter is varying from 3.8 % to 9.0 % with respect to worst-case. The proposed approximate processing method using variable CSD coefficients is readily applicable to various kinds of filters and suitable, especially, for the speech and audio applications, like oversampling ADCs and DACs, filter banks, voice/audio codecs, etc.

  • PDF

Low-power Design and Implementation of IMT-2000 Interpolation Filter using Add/Sub Processor (덧셈 프로세서를 사용한 IMT-2000 인터폴레이션 필터의 저전력 설계 및 구현)

  • Jang Young-Beom;Lee Hyun-Jung;Moon Jong-Beom;Lee Won-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.79-85
    • /
    • 2005
  • In this paper, low-power design and implementation techniques for IMT-2000 interpolation filter are proposed. Processor technique for DA(Distributed Arithmetic) filter and minimization technique for number of addition in CSD(Canonic Signed Digit) filter are utilized for low-power implementation. proposed filter structure consists of 3 blocks. In the first CSD coefficient block, every possible 4 bit CSD coefficients are calculated and stored. In second processor block, multiplication is done by MUX and addition processor in terms of filter coefficient. Finally, in third shift register block, multiplied values are output and stored in shift register. For IMT-2000 interpolation filter, proposed and conventional structures are implemented by using Verilog-HDL coding. Gate counts for the proposed structure is reduced to 31.57% comparison with those of the conventional one.

Fast Non-Adjacent Form (NAF) Conversion through a Bit-Stream Scan (비트열 스캔을 통한 고속의 Non-Adjacent Form (NAF) 변환)

  • Hwang, Doo-Hee;Shin, Jin-Myeong;Choi, Yoon-Ho
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • As a special form of the signed-digit representation, the NAF(non-adjacent form) minimizes the hamming weight by reducing the average density of the non-zero bits from the binary representation of the positive integer k. Due to this advantage, the NAF is used in various fields; in particular, it is actively used in cryptology. The existing NAF-conversion algorithm, however, is problematic because the conversion speed decreases when the LSB(least significant bit) frequently becomes "1" during the binary positive integer conversion process. This paper suggests a method for the improvement of the NAF-conversion speed for which the problems that occur in the existing NAF-conversion process are solved. To verify the performance improvement of the algorithm, the CPU cycle for the various inputs were measured on the ATmega128, a low-performance 8-bit microprocessor. The results of this study show that, compared with the existing algorithm, the suggested algorithm not only improved the processing speed of the major patterns by 20% or more on average, but it also reduced the NAF-conversion time by 13% or more.

Study on the Generation of Inaudible Binary Random Number Using Canonical Signed Digit Coding (표준 부호 디지트 코딩을 이용한 비가청 이진 랜덤 신호 발생에 관한 연구)

  • Nam, MyungWoo;Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • Digital watermarking is imperceptible and statistically undetectable information embeds into digital data. Most information in digital audio watermarking schemes have used binary random sequences. The embedded binary random sequence distorts and modifies the original data while it plays a vital role in security. In this paper, a binary random sequence to improve imperceptibility in perceptual region of the human auditory system is proposed. The basic idea of this work is a modification of a binary random sequence according to the frequency analysis of adjacent binary digits that have different signs in the sequence. The canonical signed digit code (CSDC) is also applied to modify a general binary random sequence and the pair-matching function between original and its modified version. In our experiment, frequency characteristics of the proposed binary random sequence was evaluated and analyzed by Bark scale representation of frequency and frequency gains.

Low-area FFT Processor Structure using $Radix-4^2$ Algorithm ($Radix-4^2$알고리즘을 사용한 저면적 FFT 프로세서 구조)

  • Kim, Han-Jin;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.8-14
    • /
    • 2012
  • In this paper, a low-area FFT structure using $Radix-4^2$ algorithm is proposed. The large point FFT structure consists of cascade connection of the many stages. In implementation of large point FFT using $Radix-4^2$ algorithm, stages which number of different coefficients are only 3 appear in every 2 stages. For example, in the 4096-point FFT, the stages that number of different coefficients are 3 appear in stage 1, 3, and 5 among 6 stages. Multiplication block area of these 3 stages can be reduced using CSD(Canonic Signed Digit) and common sub-expression sharing techniques. Using the proposed structure, the 256-point FFT is implemented with the Verilog-HDL coding and synthesized by $1.971mm^2$ cell area in tsmc $0.18{\mu}m$CMOS library. This result shows 23% cell area reduction compared with the conventional structure.

Sigma Delta Decimation Filter Design for High Resolution Audio Based on Low Power Techniques (저전력 기법을 사용한 고해상도 오디오용 Sigma Delta Decimation Filter 설계)

  • Au, Huynh Hai;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.141-148
    • /
    • 2012
  • A design of a 32-bit fourth-stage decimation filter decimation filter used in sigma-delta analog-to-digital (A/D) converter is proposed in this work. A four-stage decimation filter with down-sampling factor of 512 and 32-bit output is developed. A multi-stage cascaded integrator-comb (CIC) filter, which reduces the sampling rate by 64, is used in the first stage. Three half-band FIR filters are used after the CIC filter, each of which reduces the sampling rate by two. The pipeline structure is applied in the CIC filter to reduce the power consumption of the CIC. The Canonic Signed Digit (CSD) arithmetic is used to optimize the multiplier structure of the FIR filter. This filter is implemented based on a semi-custom design flow and a 130nm CMOS standard cell library. This decimation filter operates at 98.304 MHz and provides 32-bit output data at an audio frequency of 192 kHz with power consumption of $697{\mu}W$. In comparison to the previous work, this design shows a higher performance in resolution, operation frequency and decimation factor with lower power consumption and small logic utilization.

Study on Performance Improvement of Digital Filter Using MDR of Binary Number and Common Subexpression Elimination (이진수의 최소 디지트 표현과 공통 부분식 소거법을 이용한 디지털 필터의 성능 개선에 관한 연구)

  • Lee, Young-Seock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3087-3093
    • /
    • 2009
  • Digital filters are indispensible element in digital signal processing area. The performance of digital filter based on adding and multiplying operation, such as computational speed and power consuming is determined by the orders and coefficients of filter which has on effect area of semiconductor chip when it is implemented by VLSI technology. In this research, in order to performance improvement of digital filter, we proposed the algorithm to speed-up the operation of digital filter associated with the minimum signed digit representation of binary number system and method to simplify the digital filter design associated with common subexpression elimination. The performance of proposed method is evaluated by the computational speed and design-simplicity by experimental implemented digital filter on FPGA.