• Title/Summary/Keyword: Signal-based positioning

Search Result 449, Processing Time 0.026 seconds

A Study on Accuracy Improvements of Positioning System for Location-Based Service (위치기반서비스의 측위시스템 정확도 향상에 관한 연구)

  • Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2579-2585
    • /
    • 2014
  • Location-Based Services can be defined as services that integrated a mobile network device's position with other information so as to provide added value to users. One of the most important elements in the LBS is the ability to locate objects. In this paper, the positioning techniques using radio signal were introduced, and the positioning principles and accuracies for LBS of smart phone were analyzed. As a result, the some techniques for improving user security were suggested.

Analysis of Wi-Fi Signal Characteristics for Indoor Positioning Measurement (실내 위치 측정을 위한 Wi-Fi 신호 특성 분석)

  • Ha, IlKyu;Zhang, Zhehao;Park, HeeJoo;Kim, ChongGun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2177-2184
    • /
    • 2012
  • A different and effective method for indoor positioning system is needed and increased it's importance compare to the outdoor GPS based method. The FingerPrint positioning method is known as a superior method in indoor positioning system that maintains signal strength patterns for RPs(Reference Points) in database and compare the DB with the measured real-time signals on the mobile device. FingerPrint positioning method is necessary to establish an accurate database, but errors can occur by several factors. In this paper, we analyze the signal patterns of each terminal in accordance with connection state of access point and trace that the error in accordance with connection state of access point can be an important error in FingerPrint DB configuration through an experimental case study.

eLoran Signal Strength and Atmospheric Noise Simulation over Korea

  • Rhee, Joon Hyo;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • GPS is the most widely-used Positioning, Navigation, and Timing (PNT) system. Since GPS is an important PNT infrastructure, the vulnerability of GPS to signal jamming has received significant attention. Especially, South Korea has experienced intentional high-power jamming from North Korea for the past three years, and thus realized the necessity of a complementary PNT system. South Korea recently decided to deploy a high-power terrestrial navigation system, eLoran, as a complementary PNT system. According to the plan, the initial operational capability of the Korean eLoran system is expected by 2016, and the full operational capability is expected by 2018. As a necessary research tool to support the Korean eLoran program, an eLoran performance simulation tool for Korea is under development. In this paper, the received signal strength, which is necessary to simulate eLoran performance, from the suggested Korean eLoran transmitters is simulated with the consideration of effective ground conductivities over Korea. Then, eLoran signal-to-noise ratios are also simulated based on atmospheric noise data over Korea. This basic simulation tool will be expanded to estimate the navigation performance (e.g., accuracy, integrity, continuity, and availability) of the Korean eLoran system.

A Reliable Indoor Positioning Techniques through iBeacon Signal Verification (iBeacon 신호 검증을 통한 신뢰성 있는 실내 측위 기법)

  • Shin, Hong-gi;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.352-354
    • /
    • 2016
  • Recent with the progress of smart devices, there is an increasing demand for indoor location-based services. For this reason, research on indoor positioning system using a iBeacon techniques added to BLE(Bluetooth Low Energy) specifications of Bluetooth4.0 has been actively. However, RSSI signal used for the measurement of the distance between the iBeacon and the receiving terminal has the problems of inaccurate distance measurement to environmental factors such as obstacles. In this paper, we propose an implemented indoor positioning technique to use filtering technology enhance the reliability of the RSSI signal and the broadcasting signal of the terminal access point function.

  • PDF

Measuring Multipath Error of a Pseudo Quasi-Zenith Satellite

  • Tsujii, Toshiaki;Tomita, Hiroshi;Okuno, Yoshinori;Petrovski, Ivan;Asako, Masahiro;Okano, Kazuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.125-129
    • /
    • 2006
  • Japan has been investigating a new satellite based positioning system called Quasi-Zenith Satellite System (QZSS). Since the improvement of positioning availability in urban area is one of the most important advantages of the QZSS, multipath mitigation is a key factor for the QZSS positioning system. Therefore, Japan Aerospace Exploration Agency (JAXA) and GNSS Inc. have commenced the R&D of a pseudolite, which transmits the next-generation signal such as BOC(1,1), in order to evaluate the effect of multipath on the new signal. A prototype BOC pseudolite was developed in 2005, and ground tests showed a capability of generating proper pseudorange. Also, preliminary flight experiments using a pseudo quasi-zenith satellite, a helicopter on which the pseudolite is installed, were conducted in early 2006, and the BOC-type correlation function was monitored in real time.

  • PDF

High Accurate and Efficient Positioning in Urban Areas Using GPS and Pseudolites Integration

  • SUH, Yong-Cheol;SHIBASAKI, Ryosuke
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • The Global Positioning System technology has been widely used in positioning and attitude determination. It is well known that the accuracy, availability and reliability of the positioning results are heavily dependent on the number and geometric distribution of tracked GPS satellites. Because of this limitation, in some situations, such as in urban canyons, underground or inside of buildings, it is difficult to navigate with GPS receiver. Therefore, in order to improve the performance of satellite-based positioning, the integration of GPS with the pseudolite technology has been proposed. With this pseudolite technology, it is expected that seamless positioning service can be provided in a wider area without replacing existing GPS receivers. On the other hand, to adopt pseudolites on a larger scale, it is necessary to verify how the pseudolites may complement the existing GPS-based positioning. In this paper the authors present the details of the experiments and the results of the fundamental verification for seamless positioning using integration of GPS and pseudolite. This paper shows that the accuracy and efficiency of integrating GPS and pseudolite through the dynamic and static positioning experiment. The influence of pseudolite signal on GPS receiver is also discussed. The experimental results indicate that the accuracy of the height component can indeed be significantly improved, to approximately the same level as the horizontal component.

  • PDF

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

Implementation of a Library Function of Scanning RSSI and Indoor Positioning Modules (RSSI 판독 라이브러리 함수 및 옥내 측위 모듈 구현)

  • Yim, Jae-Geol;Jeong, Seung-Hwan;Shim, Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1483-1495
    • /
    • 2007
  • Thanks to IEEE 802.11 technique, accessing Internet through a wireless LAN(Local Area Network) is possible in the most of the places including university campuses, shopping malls, offices, hospitals, stations, and so on. Most of the APs(access points) for wireless LAN are supporting 2.4 GHz band 802.11b and 802.11g protocols. This paper is introducing a C# library function which can be used to read RSSIs(Received Signal Strength Indicator) from APs. An LBS(Location Based Service) estimates the current location of the user and provides useful user's location-based services such as navigation, points of interest, and so on. Therefore, indoor, LBS is very desirable. However, an indoor LBS cannot be realized unless indoor position ing is possible. For indoor positioning, techniques of using infrared, ultrasound, signal strength of UDP packet have been proposed. One of the disadvantages of these techniques is that they require special equipments dedicated for positioning. On the other hand, wireless LAN-based indoor positioning does not require any special equipments and more economical. A wireless LAN-based positioning cannot be realized without reading RSSIs from APs. Therefore, our C# library function will be widely used in the field of indoor positioning. In addition to providing a C# library function of reading RSSI, this paper introduces implementation of indoor positioning modules making use of the library function. The methods used in the implementation are K-NN(K Nearest Neighbors), Bayesian and trilateration. K-NN and Bayesian are kind of fingerprinting method. A fingerprint method consists of off-line phase and realtime phase. The process time of realtime phase must be fast. This paper proposes a decision tree method in order to improve the process time of realtime phase. Experimental results of comparing performances of these methods are also discussed.

  • PDF

Pseudo-Correlation-Function Based Unambiguous Tracking Technique for CBOC (6,1,1/11) Signals

  • Jeong, Gil-Seop;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Binary Offset Carrier (BOC) signal planned for future Global Navigation Satellite System (GNSS) provided better positioning accuracy and smaller multipath error than GPS C/A signal. However, due to the multiple side peaks in the auto-correlation function (ACF) of the BOC modulated signals, a receiver may false lock onto one of the side peaks in the tracking mode. This false lock would then result in a fatal tracking error. In this paper, we propose an unambiguous tracking method for composite BOC (CBOC) signals to mitigate this problem. It aims to reduce the side peaks of the ACF of CBOC modulated signals. It is based on the combination of traditional CBOC correlation function (CF) and reference CF of unmodulated pseudo- random noise code (PRN code). First, we present that cross-correlation function (CCF) with unmodulated PRN code is close to the secondary peaks of the traditional CBOC. Then, we obtain an unambiguous correlation function by subtracting traditional CBOC ACF from these CFs. Finally, the tracking performance for the CBOC signals is examined, and it is shown that the proposed method has better performance than the traditional unambiguous tracking method in additive white Gaussian noise (AWGN) channel.

Design of LBSs Using DGPS and Digital Mobile Broadcasting System

  • Kwon, Seong-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.22-28
    • /
    • 2013
  • In this paper, new LBS (location based service) are proposed using conventional DMB (digital multimedia/mobile broadcasting) system. LBS applications are proposed that can be suitable for the subway and ground transportation based on S-DMB (satellite-DMB) and T-DMB (terrestrial-DMB) respectively. In the shaded area such as subway, the broadcasting signal transmitted from the satellite of S-DMB system should be retransmitted by the earth repeater called the gap filler and each gap filler has its own identification value called the gap filler ID which introduces the area in which the gap filler was installed. Therefore, the LBS can be implemented by using the gap filler ID of S-DMB on the subway in which the GPS (global positioning system) can't be received. Unlike the LBS on the subway, the combination of T-DMB and DGPS (differential GPS) will be introduced as a way for ground transportation. Generally, DGPS has been designed to compensate the position value calculated from the GPS signal so that positioning error of about 1 meter can be obtained by using DGPS information. T-DMB system transmitting DGPS signal will be expected to be commercial in Korea and, if using DGPS information transmitted through T-DMB network, LBS with more precise positioning than GPS alone can be implemented in the ground vehicles.