• Title/Summary/Keyword: Signal transducer and transcription3

Search Result 92, Processing Time 0.023 seconds

Inhibitory Effect of Dihydroartemisinin, An Active Ingredient of Artemisia annua, on Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes

  • Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: Artemisinin and its derivatives extracted from Artemisia annua, a Chinese herbal medicine, have variable biological effects due to structural differences. Up to date, the anti-obesity effect of dihydroartemisinin (DHA), a derivative of artemisinin, is unknown. The purpose of this study was to investigate the anti-adipogenic and lipolytic effects of DHA on 3T3-L1 preadipocytes. Methods: Oil Red O staining and AdipoRed assay were used to measure lipid accumulation and triglyceride (TG) content in 3T3-L1 cells, respectively. Cell count analysis was used to determine the cytotoxicity of 3T3-L1 cells. Western blot and real-time reverse transcription polymerase chain reaction analyses were used to analyze the expression of protein and mRNA in 3T3-L1 cells, respectively. Results: DHA at 5 μM markedly inhibited lipid accumulation and reduced TG content in differentiating 3T3-L1 cells with no cytotoxicity. Furthermore, DHA at 5 μM inhibited the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A as well as the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Moreover, while DHA at 5 μM had no effect on the mRNA expression of adiponectin, it strongly suppressed that of leptin in differentiating 3T3-L1 cells. However, DHA at 5 μM had no lipolytic effect on differentiated 3T3-L1 cells, as assessed by no enhancement of glycerol release. Conclusions: These results demonstrate that DHA at 5 μM has a strong anti-adipogenic effect on differentiating 3T3-L1 cells through the reduced expression and phosphorylation of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

3′,4′-Disenecioylkhellactone from Peucedanum japonicum Thunb. Induces Apoptosis Mediated by Inhibiting STAT3 Signaling in Human Gastric Cancer Cells (식방풍 유래 화합물 3′,4′-Disenecioylkhellactone의 위암세포에서 STAT3 활성화 억제를 매개로 하는 세포사멸 유도작용)

  • Chun, Jaemoo;Kim, Jinwoong;Kim, Yeong Shik
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.225-230
    • /
    • 2018
  • 3',4'-Disenecioylkhellactone is one of khellactone-type coumarins isolated from the roots of Peucedanum japonicum Thunb. However, its pharmacological effects are still little understood. In the present study, we investigated the inhibitory effect of 3',4'-disenecioylkhellactone on growth of gastric cancer cells. 3',4'-Disenecioylkhellactone strongly suppressed cell proliferation and induced caspase-mediated apoptosis in AGS human gastric cancer cells. Analysis of phospho-antibody arrays revealed 3',4'-disenecioylkhellactone effectively suppressed signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation. 3',4'-Disenecioylkhellactone decreased STAT3 translocation to the nucleus and expression of STAT3 target genes. In addition, we examined the level of STAT3 activation in several gastric cancer cells and found that the inhibition of STAT3 phosphorylation by 3',4'-disenecioylkhellactone was associated with gastric cancer cell proliferation. Taken together, this study provides evidence for the first time that 3',4'-disenecioylkhellactone may be a potential therapeutic agent for the prevention or treatment of gastric cancer.

Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae

  • Kho, Chang-Won;Lee, Phil-Young;Bae, Kwang-Hee;Kang, Sung-Hyun;Cho, Sa-Yeon;Lee, Do-Hee;Sun, Choong-Hyun;Yi, Gwan-Su;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.270-282
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.

Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line

  • Park, Jong-Shik;Bang, Ok-Sun;Kim, Jinhee
    • Integrative Medicine Research
    • /
    • v.3 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Background: The transcription factor signal transducer and activator of transcription 3 (Stat3)is constitutively activated in many human cancers. It promotes tumor cell proliferation,inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor hostimmune responses. Therefore, Stat3 has emerged as a promising molecular target for cancertherapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicinestraditionally used in Korea.Methods: Medicinal herb extracts in 70% ethanol were screened for their ability to suppressStat3 in the A549 human lung cancer cell line. A Stat3-responsive reporter assay system wasused to detect intracellular Stat3 activity in extract-treated cells, and Western blot analyseswere performed to measure the expression profiles of Stat3-regulated proteins.Results: Fifty percent of the 38 extracts possessed at least mild Stat3-suppressive activities(i.e., activity less than 75% of the vehicle control). Ethanol extracts of Bupleurum falcatumL., Taraxacum officinale Weber, Solanum nigrum L., Ulmus macrocarpa Hance, Euonymus alatusSieb., Artemisia capillaris Thunb., and Saururus chinensis (Lour.) Baill inhibited up to 75% of thevehicle control Stat3 activity level. A549 cells treated with these extracts also had reducedBcl-xL, Survivin, c-Myc, and Mcl-1 expression.Conclusion: Many medicinal herbs traditionally used in Korea contain Stat3 activity-suppressing substances. Because of the therapeutic impact of Stat3 inhibition, these resultscould be useful when developing novel cancer therapeutics from medicinal herbs.

Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

  • Kim, Nam-Hoon;Park, Hyo Jung;Oh, Mi-Kyung;Kim, In-Sook
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Signal transducer and activator of transcription 3 (STAT3) and telomerase are considered attractive targets for anticancer therapy. The in vitro anticancer activity of the gold(I) compound auranofin was investigated using MDA-MB 231 human breast cancer cells, in which STAT3 is constitutively active. In cell culture, auranofin inhibited growth in a dose-dependent manner, and N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), markedly blocked the effect of auranofin. Incorporation of 5-bromo-2'-deoxyuridine into DNA and anchorage-independent cell growth on soft agar were decreased by auranofin treatment. STAT3 phosphorylation and telomerase activity were also attenuated in cells exposed to auranofin, but NAC pretreatment restored STAT3 phosphorylation and telomerase activity in these cells. These findings indicate that auranofin exerts in vitro antitumor effects in MDA-MB 231 cells and its activity involves inhibition of STAT3 and telomerase. Thus, auranofin shows potential as a novel anticancer drug that targets STAT3 and telomerase.

Viscum album and its Constituents Downregulate MMP-13 Expression in Chondrocytes and Protect Cartilage Degradation

  • Lee, Ju Hee;Kwon, Yong Soo;Jung, Da Young;Kim, Na Young;Lim, Hyun;Kim, Hyun Pyo
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.151-160
    • /
    • 2021
  • Under some pathological conditions such as osteoarthritis, matrix metalloproteinases (MMPs) including MMP-13 have an important role in degrading cartilage materials. When the regulatory effects of some herbal extracts on MMP-13 expression were examined to evaluate the cartilage-protective potential, the ethanol extract of the radix of Viscum album was found to strongly downregulate MMP-13 induction in IL-1β-treated chondrocytes, SW1353 cells. Based on this finding, activity-guided separation was carried out, which yielded five constituents identified as 3,5-dihydroxy-1,7-bis(4-hydroxyphenyl)heptane (1), hesperetin-7-glucoside (2), syringin (3), homoflavoyadorinin B (4), and 4,4'-dihydroxy-3,6'-dimethoxychalcone-2'-glucoside (5). Of these, 1 and 5 significantly inhibited MMP-13 expression in SW1353 cells, with 5 being the most potent. Compound 5, a chalcone derivative, showed the downregulation of MMP-13 at 20 - 100 μM. The mechanism study revealed that 5 exerted MMP-13 down-regulatory action, at least in part, by interrupting the signal transducer and activator of transcription 1 (STAT1) activation pathway. Furthermore, this compound protected against cartilage degradation in an IL-1-treated rabbit cartilage explant culture. All these findings demonstrated for the first time that Viscum album and its constituents, especially chalcone derivative (5), possessed cartilage-protective activity. These natural products may have the potential for alleviating cartilage degradation.

Construction and validation of a synthetic phage-displayed nanobody library

  • Minju Kim;Xuelian Bai;Hyewon Im;Jisoo Yang;Youngju Kim;Minjoo MJ Kim;Yeonji Oh;Yuna Jeon;Hayoung Kwon;Seunghyun Lee;Chang-Han Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.457-467
    • /
    • 2024
  • Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phage-displayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • Krishnan, Jayalakshmi;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.153-166
    • /
    • 2012
  • A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

Root Bark extract of Morus alba L. Suppressed the Migration and Invasion of HCT116 Human Colorectal Carcinoma Cells (HCT116 인체 대장암 세포주에서 상백피 추출물에 의한 전이 억제 효과)

  • Park, Shin-Hyung;Park, Hyun-Ji
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.5
    • /
    • pp.177-184
    • /
    • 2021
  • The root bark of Morus alba L. (MA) used in traditional oriental medicine for the treatment of pulmonary diseases exerts various pharmacological activities including anticancer effects. In the current study, we investigated the effects of MA on the migration and invasion of colorectal carcinoma cells. Results from a transwell assay showed that the methylene chloride extract of MA (MEMA) suppressed the migration and invasion of HCT116 human colorectal carcinoma cells in a concentration-dependent manner. MEMA reduced both mRNA and protein levels of matrix metalloproteinase (MMP)-9, but did not suppress the expression of MMP-2 in HCT116 cells. As a molecular mechanism, MEMA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK, JNK and p38, in a dose-dependent manner. In addition, MEMA dephosphorylated both Src and signal transducer and activator of transcription 3 (STAT3) in HCT116 cells. Taken together, we demonstrate that MEMA suppressed the migration and invasion capacity of HCT116 human colorectal cancer cells by downregulation of MMP-9 and inactivation of both MAPKs and Src/STAT3 signaling pathway.

Effects of rosmarinic acid on immunoregulatory activity and hepatocellular carcinoma cell apoptosis in H22 tumor-bearing mice

  • Cao, Wen;Mo, Kai;Wei, Sijun;Lan, Xiaobu;Zhang, Wenjuan;Jiang, Weizhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.501-508
    • /
    • 2019
  • Rosmarinic acid (RA) is a natural polyphenolic compound that exists in many medicinal species of Boraginaceae and Lamiaceae. The previous studies have revealed that RA had therapeutic effects on hepatocellular carcinoma (HCC) in the H22-xenograft models by inhibiting the inflammatory cytokines and $NF-{\kappa}B$ p65 pathway in the tumor microenvironment. However, its molecular mechanisms of immunoregulation and pro-apoptotic effect in HCC have not been fully explored. In the present study, RA at 75, 150, and 300 mg/kg was given to H22 tumor-bearing mice via gavage once a day for 10 days. The results showed that RA can effectively inhibit the tumor growth through regulating the ratio of $CD4^+/CD8^+$ and the secretion of interleukin (IL)-2 and interferon-${\gamma}$, inhibiting the expressions of IL-6, IL-10 and signal transducer and activator of transcription 3, thereby up-regulating Bax and Caspase-3 and down-regulating Bcl-2. The underlying mechanisms involved regulation of immune response and induction of HCC cell apoptosis. These results may provide a more comprehensive perspective to clarify the anti-tumor mechanism of RA in HCC.