• Title/Summary/Keyword: Signal to Interference-plus-Noise Ratio (SINR)

Search Result 111, Processing Time 0.027 seconds

Performance Analysis of Deep Learning Based Transmit Power Control Using SINR Information Feedback in NOMA Systems (NOMA 시스템에서 SINR 정보 피드백을 이용한 딥러닝 기반 송신 전력 제어의 성능 분석)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2021
  • In this paper, we propose a deep learning-based transmit power control scheme to maximize the sum-rates while satisfying the minimum data-rate in downlink non-orthogonal multiple access (NOMA) systems. In downlink NOMA, we consider the co-channel interference that occurs from a base station other than the cell where the user is located, and the user feeds back the signal-to-interference plus noise power ratio (SINR) information instead of channel state information to reduce system feedback overhead. Therefore, the base station controls transmit power using only SINR information. The use of implicit SINR information has the advantage of decreasing the information dimension, but has disadvantage of reducing the data-rate. In this paper, we resolve this problem with deep learning-based training methods and show that the performance of training can be improved if the dimension of deep learning inputs is effectively reduced. Through simulation, we verify that the proposed deep learning-based power control scheme improves the sum-rate while satisfying the minimum data-rate.

Performance Analysis of OFDMA Uplink Systems with Symbol Timing Misalignment (사용자간 상대적인 시간오차에 의한 OFDMA 역방향 시스템의 성능 분석)

  • Park Myonghee;Hong Daesik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents our investigation for the effect of symbol timing errors in orthogonal frequency division multiple access (OFDMA) uplink systems. We express the symbol timing errors between users as the symbol timing misalignments with respect to the desired user. Then, we derive an explicit expression of the average effective signal-to-interference-plus-noise ratio. (SINR) as a function of the maximum value of the symbol timing misalignments. Based on the resulting SINR degradation, we evaluate the SINR gain with guard subcarriers in order to mitigate the effect of the symbol timing misalignments.

Adapt ive beamforming technique with variable forgetting factor in moving jammer environments (이동 jammer 환경에 대응할 수 있는 가변 망각 인자 적응 빔형성 기법)

  • Song Joon-il;Kim Yoon Chung;Lim Jun-seok;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.361-364
    • /
    • 2001
  • 지금까지 수중음향 시스템에서 jammer 신호를 제거하는 방법에 관한 많은 연구가 진행되어 왔다. 그러나, 기존의 빔형성 기법은 간섭 신호원(interference source)이 움직일 경우 그 성능이 현저히 떨어지는 문제점을 갖고 있다. 이러한 현상은 수중 음향 시스템이 간섭 신호원의 움직임에 대하여 즉각적으로 null의 위치를 변화시키지 못하기 때문에 발생하게 된다. 이를 해결하기 위해서는 시간에 따라 위치가 변하는 jammer 환경에 대하여 대응할 수 있는 새로운 알고리즘이 필요하게 된다. 이러한 단점을 보완하기 위해 본 논문에서는 가변 망각인자를 갖는 적응 빔형성 기법을 제안하고, 컴퓨터 모의실험을 통하여 제안된 알고리즘이 기존의 적응 빔형성 기법에 비하여 출력 SINR(signal to interference plus noise ratio)의 측면에서 성능 향상을 가짐을 보였다.

  • PDF

Analytical Evaluation of FFR-aided Heterogeneous Cellular Networks with Optimal Double Threshold

  • Abdullahi, Sani Umar;Liu, Jian;Mohadeskasaei, Seyed Alireza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3370-3392
    • /
    • 2017
  • Next Generation Beyond 4G/5G systems will rely on the deployment of small cells over conventional macrocells for achieving high spectral efficiency and improved coverage performance, especially for indoor and hotspot environments. In such heterogeneous networks, the expected performance gains can only be derived with the use of efficient interference coordination schemes, such as Fractional Frequency Reuse (FFR), which is very attractive for its simplicity and effectiveness. In this work, femtocells are deployed according to a spatial Poisson Point Process (PPP) over hexagonally shaped, 6-sector macro base stations (MeNBs) in an uncoordinated manner, operating in hybrid mode. A newly introduced intermediary region prevents cross-tier, cross-boundary interference and improves user equipment (UE) performance at the boundary of cell center and cell edge. With tools of stochastic geometry, an analytical framework for the signal-to-interference-plus-noise-ratio (SINR) distribution is developed to evaluate the performance of all UEs in different spatial locations, with consideration to both co-tier and cross-tier interference. Using the SINR distribution framework, average network throughput per tier is derived together with a newly proposed harmonic mean, which ensures fairness in resource allocation amongst all UEs. Finally, the FFR network parameters are optimized for maximizing average network throughput, and the harmonic mean using a fair resource assignment constraint. Numerical results verify the proposed analytical framework, and provide insights into design trade-offs between maximizing throughput and user fairness by appropriately adjusting the spatial partitioning thresholds, the spectrum allocation factor, and the femtocell density.

DFT-based Channel Estimation Scheme for Sidelink in D2D Communication (D2D 통신에서 사이드링크를 위한 DFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.22-31
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed device-to-device (D2D) communication to cope with the explosively increasing mobile data traffic. The D2D communication uses sidelink based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak-to-average power ratio (PAPR). In addition, demodulation reference signal (DMRS) is designed to support multiple input multiple output (MIMO). In this paper, we propose the DFT-based channel estimation scheme for sidelink in D2D communication. The proposed scheme uses the 2-Dimensional Minimum Mean Square Error (2-D MMSE) interpolation scheme for the user moving at a high speed. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced system. Simulation results show that the proposed channel estimation scheme can improve signal-to-interference-plus-noise ratio (SINR), throughput and spectral efficiency of conventional scheme.

Power Control Scheme for Effective Serving Cell Selection in Relay Environment of 3GPP LTE-Advanced System (3GPP LTE-Advanced 시스템의 Relay 환경에서 효율적인 Serving Cell 선택을 위한 Power Control 기법)

  • Min, Young-Il;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.215-222
    • /
    • 2011
  • In this paper, we propose a power control scheme for effective serving cell selection in Relay environment of 3GPP (3rd Generation Partnership Project) LTE (Long Tenn Evolution)-Advanced system. A conventional serving cell selection scheme which does not use channel states of backhaul link has a problem that this scheme does not select serving cell supporting maximum throughput. Also, conventional proposed serving cell selection schemes that eNB or RN transmits channel states of backhaul link have problems that conventional schemes need to additional data transmission, serving cell selection process complexity is increased because UE considers channel states of backhaul link, and received signal is degraded because strong interference which is transmission signal from RN. Therefore, for solve these problems, we propose power control scheme that RN control transmission power according to received SINR (Signal to Interference plus Noise Ratio) of backhaul link. By extensive computer simulation, we verify that the power control Relay scheme is attractive and suitable for the Relay environment.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

  • Lei, Jiang;Vazquez-Castro, Maria Angeles
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.472-480
    • /
    • 2011
  • In this paper, we investigate two new candidate transmission schemes, non-orthogonal frequency reuse (NOFR) and beam-hopping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the signal-to-interference plus noise ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g., power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performance of the two candidate schemes. Simulation results show significant improvements in terms of power gain, spectral efficiency and traffic matching ratio when comparing with conventional systems, which are designed based on uniform bandwidth and power allocation. The results also show that BH system turns out to show a less complex design and performs better than NOFR system specially for non-real time services.

SINR Maximizing Collaborative Beamforming with Enhanced Robustness Against Antenna Correlation (안테나 간 상관도에 강건한 SINR 최대화 협력적 빔포밍 기법)

  • Kim, Jae-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.95-103
    • /
    • 2009
  • In this paper, a generation method of transmit and receive beamforming vectors based on base station cooperation is proposed which maximizes the user SINR in mobile cellular multi-user MIMO systems. There are two main sources of interference which deteriorate the performance of the system, i.e. the inter-user interference caused by the usage of the same radio resource for multiple users in the system, and the inter-cluster interference from neighboring base stations which are not participating in cooperative transmission. The proposed scheme cancels out the inter-user interference by using the block diagonalization(BD) method, and mitigate the inter-cluster interference by using optimal transmit and receive beamforming vectors based on optimal combining(OC) with the statistic information of inter-cluster interference. We perform computer simulations to verify the performance of the proposed scheme, and compare the result to the conventional performance obtained from utilizing the receiver side information only or utilizing the information from neither sides. The performance evaluations are conducted not only over the independent MIMO channels, but over correlated MIMO channels to demonstrate the robustness of the proposed scheme over the channels with correlation among antennas.

Inter-Sector Beamforming with MMSE Receiver in the Downlink of TDD Cellular Systems

  • Yeom, Jae-Heung;Lee, Yong-Hwan
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • The use of beamforming is effective for users in limited power environments. However, when it is applied to the downlink of a cellular system with universal frequency reuse, users near the sector boundary may experience significant interference from more than one sector. The use of a minimum mean square error (MMSE)-type receiver may not sufficiently cancel out the interference unless a sufficient number of receive antennas are used. In this paper, we consider the use of inter-sector beamforming that cooperates with a neighboring sector in the same cell to mitigate this interference problem in time-division duplex (TDD) environments. The proposed scheme can avoid interference from an adjacent sector in the same cell, while enhancing the transmit array gain by using the TDD reciprocity. The performance of the proposed scheme is analyzed in terms of the output signal-to-interference-plus-noise power ratio (SINR) and the output capacity when applied to an MMSE-type receiver. The beamforming mode can be analytically switched between the inter-sector and the single-sector mode based on the long-term channel information. Finally, the effectiveness of the proposed scheme is verified by computer simulation.