• Title/Summary/Keyword: Signal reduction

Search Result 1,481, Processing Time 0.035 seconds

A Tone Injection PAPR Reduction Method using Multi-objective Optimization based on Weighted-sum Genetic Algorithm (가중합 유전자 알고리즘 기반의 다목적 최적화를 이용한 톤 삽입 PAPR 저감 기법)

  • Park, Soon-Kyu;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.217-225
    • /
    • 2009
  • Tone injection scheme has been known as one of peak to average power ratio (PAPR) reduction methods deployable to multi-carrier system like orthogonal frequency division multiplexing (OFDM). The basic idea in tone injection scheme is to enforce the constellation size larger so that each of original constellation points is mapped into the preassigned distinct locations. According to the tone injection scheme, it increases symbol power highly induced inherently by expanding constellation to get optimal PAPR reduction. In the other hand, to get optimal power increase, the PAPR would be reduced insufficiently with limited tone injection signal. To withstand these problems, this paper consider the reduction of the PAPR and power increase problem simultaneously, Toward this, the tone injection scheme accomplished by employing the weighted sum genetic algorithm which has been utilized to solve multi-objective optimization problem (MOOP). The simulation results verifies that the proposed scheme can control the effective PAPR performance and alleviation of power increase flexibly by the weight value at the expense of relatively low complexity.

Noise Reduction using Passive and Active Noise Control in the Closed Area (수동과 능동방식을 혼용한 폐공간에서 소음감쇠)

  • Cho Byung-Mo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.16-23
    • /
    • 2001
  • Passive noise reduction is a classical approach to attenuate industrial noise, and an active noise cancellation has several advantages over the passive noise cancellation. The active noise reduction system offers a better low frequency performance with a smaller and lighter system. This paper presents a simple active closed loop control system which consists of an controller for inverting and compensating the phase delay, a microphone for picking up the external noise, and a loudspeaker for radiating the acoustic out of phase signal to reduce the external noise, and external noise can be reduced after compensating the phase difference to be $180^{\circ}$ in the frequency of maximum value in the amplitude response. The noise of the phase delay covered from $50^{\circ}\;to\;310^{\circ}$ tends to be reduced in the active noise control system and it is possible to obtain a noise cancelling of up to approximately 20[dB] at the ears in the enclosurer.

  • PDF

PAPR Reduction Scheme Using Selective Mapping in GFDM (선택사상기법을 이용한 GFDM의 최대전력 대 평균전력 비 감소기법)

  • Oh, Hyunmyung;Yang, Hyun Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.698-706
    • /
    • 2016
  • Orthogonal frequency division multiplexing (OFDM) has high peak to power ratio (PAPR). High PAPR makes problems such as signal distortion and circuit cost increasing. To solve the problemsm several PAPR reduction methods have been proposed. However, synchronization and orthogonality in OFDM systems may be a limitation to reduce latency for 5G networks. Generalized frequency division multiplexing (GFDM) is one of the possible solutions for asynchronous and non-orthogonal systems, which are more preferable to reduce the latency. However, multiple subsymbols in GFDM result in more superposition in time domain, GFDM has higher PAPR. Selective mapping (SLM) is one of PAPR reduction techniques in OFDM, which uses phase shift. The PAPR of GFDM SLM is compared to conventional GFDM and OFDM SLM in terms of PAPR reduction enhancement via numerical simulations. In addition, the out-of-band performance is analyzed in the aspect of asynchronous condition interference.

A Real-Time RPWM Inverter for Reduction of Switching Frequency Band Noise in the Induction Motor (유도전동기의 스위칭 주파수대 소음 저감을 위한 실시간 RPWM 인버터)

  • 나석환;최창률;양승학;김광헌;임영철;박종건
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.64-73
    • /
    • 1997
  • RPWM(Random Pulse Width Modulation) techniques have been attracting an interest as an excellent reduction method of acoustic noise on the inverter drive system. Using randomly changed switching fre-quency of the inverter, the power spectrum of the electromagnetic acoustic noise can be spread out into the wide-band area. The wide band noise is much more comfortable and less annoying than the narrow-band one. This paper describes an implementationof the triangular carrier frequency modultde RPWM inverter drive system The poweer soedtrum of the noise emittde from the induction motro was measured in the anechoic chamber. The analysis of the sources for the acoustic noise and the effects of the noise reduction are confirmed by the ceasured dpectra of the noise. Real-time RPWM along with the speed control was achieved by high speed DSP(Digital Signal Processor ) TmS320C31, By changing the center frequency and the bandwidth of the carrier, theis real-time RPWM scheme can be used as an efficient switching frequency band acoustic noise reduction method for the inverter system with variant load conditions.

  • PDF

Memory Reduction Method of Radix-22 MDF IFFT for OFDM Communication Systems (OFDM 통신시스템을 위한 radix-22 MDF IFFT의 메모리 감소 기법)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2020
  • In OFDM-based very high-speed communication systems, FFT/IFFT processor should have several properties of low-area and low-power consumption as well as high throughput and low processing latency. Thus, radix-2k MDF (multipath delay feedback) architectures by adopting pipeline and parallel processing are suitable. In MDF architecture, the feedback memory which increases in proportion to the input signal word-length has a large area and power consumption. This paper presents a feedback memory size reduction method of radix-22 MDF IFFT processor for OFDM applications. The proposed method focuses on reducing the feedback memory size in the first two stages of MDF architectures since the first two stages occupy about 75% of the total feedback memory. In OFDM transmissions, IFFT input signals are composed of modulated data and pilot, null signals. In order to reduce the IFFT input word-length, the integer mapping which generates mapped data composed of two signed integer corresponding to modulated data and pilot/null signals is proposed. By simulation, it is shown that the proposed method has achieved a feedback memory reduction up to 39% compared to conventional approach.

Reduction of Metal Artifact by Using VAT-SEMAC in MRI (VAT-SEMAC을 이용한 보철물에 의한 허상 감소)

  • Kim, Hyung-Tae;Lim, Jong-Nam;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.227-232
    • /
    • 2019
  • MRI examination for patients with metal objects has in poor image quality. Metallic implants can result in poor image because magnetic susceptibility causes signal loss and distortion and makes poor imaging, which is called magnetic susceptibility artifact or metal artifact. There are several approaches to reduce metal artifacts. In this study, we study the reduction of metal artifact by VAT and SEMAC techniques. A metal implant used for orthopedic surgery was attached to the phatom and the distortion caused by the artifact was measured under T1WI and T2WI protocols. Several techniques of VAT only and VAT and SEMAC for the reduction of metal artifact were compared. The metal artifact showed a reduction of at least 8% to a maximum of 26% in the VAT-SEMAC. The VAT-SEMAC technique can be applied to patients with orthopedic implants to improve image quality. If scan time and image quality are simultaneously considered in VAT-SEMAC technique, metal artifact will be reduced in clinical practice.

Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI (BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석)

  • Tong, Yang;Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1333-1342
    • /
    • 2018
  • Until now, Electroencephalography(: EEG) has been the most important and convenient method for the diagnosis and treatment of epilepsy. However, it is difficult to identify the wave characteristics of an epileptic EEG signals because it is very weak, non-stationary and has strong background noise. In this paper, we analyse the effect of dimensionality reduction methods on Epileptic EEG feature selection and classification. Three dimensionality reduction methods: Pincipal Component Analysis(: PCA), Kernel Principal Component Analysis(: KPCA) and Linear Discriminant Analysis(: LDA) were investigated. The performance of each method was evaluated by using Support Vector Machine SVM, Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR) and Random Forest(: RF). From the experimental result, PCA recorded 75% of highest accuracy in SVM, LR and K-NN. KPCA recorded 85% of best performance in SVM and K-KNN while LDA achieved 100% accuracy in K-NN. Thus, LDA dimensionality reduction is found to provide the best classification result for epileptic EEG signal.

Analysis of fMRI Signal Using Independent Component Analysis (Independent Component Analysis를 이용한 fMRI신호 분석)

  • 문찬홍;나동규;박현욱;유재욱;이은정;변홍식
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.188-195
    • /
    • 1999
  • The fMRI signals are composed of many various signals. It is very difficult to find the accurate parameter for the model of fMRI signal containing only neural activity, though we may estimating the signal patterns by the modeling of several signal components. Besides the nose by the physiologic motion, the motion of object and noise of MR instruments make it more difficult to analyze signals of fMRI. Therefore, it is not easy to select an accurate reference data that can accurately reflect neural activity, and the method of an analysis of various signal patterns containing the information of neural activity is an issue of the post-processing methods for fMRI. In the present study, fMRI data was analyzed with the Independent Component Analysis(ICA) method that doesn't need a priori-knowledge or reference data. ICA can be more effective over the analytic method using cross-correlation analysis and can separate the signal patterns of the signals with delayed response or motion related components. The Principal component Analysis (PCA) threshold, wavelet spatial filtering and analysis of a part of whole images can be used for the reduction of the freedom of data before ICA analysis, and these preceding analyses may be useful for a more effective analysis. As a result, ICA method will be effective for the degree of freedom of the data.

  • PDF

A Study on Indoor Position-Tracking System Using RSSI Characteristics of Beacon (비콘의 RSSI 특성을 이용한 실내 위치 추적 시스템에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab;Hoang, Geun-chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Indoor location-based services have been developed based on the Internet of Things technologies which measure and analyze users who are moving in their daily lives. These various indoor positioning technologies require separate hardware and have several disadvantages, such as a communication protocol which becomes complicated. Based on the fact that a reduction in signal strength occurs according to the distance due to the physical characteristics of the transmitted signal, RSSI technology that uses the received signal strength of the wireless signal used in this paper measures the strength of the transmitted signal and the intensity of the attenuated received signal and then calculates the distance between a transmitter and a receiver, which requires no separate costs and makes to implement simple measurements. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance.It was confirmed that the RSSI values through the average filtering and the RSSI values measured by setting the coefficient value of the feedback filtering to 0.5 were ranged from -61 dBm to - 52.5 dBm, which shows irregular and high values decrease slightly as much as about -2 dBm to -6 dBm as compared to general measurements.

Effect of Gd-DTPA on Diffusion in Canine Brain with Hyperacute Stroke (초급성 뇌경색을 일으킨 개에서 Gd-조영제의 주입이 뇌의 확산에 미치는 영향)

  • 김범수;정소령;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 2002
  • Purpose : To evaluate the effect of Gd-DTPA on signal intensity of diffusion-weighted magnetic resonance(MR) image and apparent diffuse coefficient (ADC) in dog brain with hype racute stroke. Materials and methods : Experimental canine model of hyperacute cerebral infarction was made by selective intraarterial embolization with particulate embolic material. Diffusion-weighted MR imaging was performed in five dogs at 1 hour after the embolization of internal carotid artery. After intravenous bolus injection of Gd- DTPA, additional 11 diffusion-weighted MR images were serially obtained from 2 minutes to 90 minutes after injection in each dog. The author evaluated findings of hyperacute cerebral infarction on diffusion-weighted MR imaging, and calculated mean signal intensity and mean ADC in infarcted region and contralateral normal region. Statistical analysis of mean signal intensity, mean ADC and contrast-noise ratio before and after Gd-DTPA injection was performed. Results : Hyperacute cerebral infarction developed in all five dogs on diffusion-weighted MR images obtained 1 hour after embolization. The area of hyperacute infarction had steady increase in signal intensity on diffusion-weighted MR image and decrease in ADC. In normal perfusion area, decrease in signal intensity was observed at 2 minutes the Gd-DTPA injection, whereas ADC did not changed. Conclusion : Intravenous injection of Gd-DTPA had no influence on ADC in both hyperacute infarction and normally perfused are a, but caused initial transient signal reduction in normally perfused area on diffusion-weighted MR image due to susceptibility effect of Gd-DTPA. It is important to calculate ADC in evaluating the effect of diffusion after injection of Gd-DTPA.

  • PDF