• Title/Summary/Keyword: Signal pathway

Search Result 823, Processing Time 0.023 seconds

ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells (BV2 microglial cells에서 ERK를 통한 고삼의 Tnf alpha 생성 억제효과)

  • Kim, Soo-Cheol;Han, Mi-Young;Park, Hae-Jeong;Jung, Kyung-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • Objectives : Sophora flavescens (SF) is widely used in traditional herbal medicine in Korea and is well recognized for its anti-inflammatory effect. However, its effect on Tumornecrosis factor alpha (Tnf) production in BV2 microglial cell is not yet known. Methods : We investigated the effect of SF on the production and expression of Tnf, a well known inflammatory mediator, in lipopolysaccaride (LPS)-activated BV2 microglial cells. Results : The LPS-induced Tnf production was markedly reduced by treatment with SF (50 ${\mu}g/ml$). In reverse transcription polymerase chain reaction (RT-PCR) analysis, SF suppressed the LPS activated expression of Tnf mRNA. In addition, Western blot analysis confirmed that SF suppressed the expression of Tnf. Sophora flavescens also inhibited the LPS-induced phosphylation of extracellular signal-regulated kinases (ERK), which mediate the Tnfproduction signaling pathway whereas LPS-induced phosphylation of p38 mitogen activated protein kinase (p38 MAPK), and c-Jun NH2-terminal kinases (JNK) was not inhibited by SF, which implies that SF suppresses LPS-induced Tnf production via the ERK mediated pathway. Conclusion : Taken together, these findings indicated that SF inhibits LPS-induce Tnf production, and that this inhibitory effect is mediated via the ERK pathway.

  • PDF

Expression Analysis of Visual Arrestin gene during Ocular Development of Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Young Mee;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2013
  • Olive flounder (Paralichthys olivaceus) is one of the commercial important flatfish species in Korea. The ocular signal transduction pathway is important in newly hatched flounders because it is closely involved in the initial feeding phase thus essential for survival during the juvenile period. However, the study of gene expression during ocular development is incomplete in olive flounder. Therefore we examined the expression analysis of specifically induced genes during the development of the visual system in newly hatched flounders. We searched ocular development-involved gene in the database of expressed sequence tags (ESTs) from olive flounder eye and this gene similar to arrestin with a partial sequence homology. Microscopic observation of retinal formation corresponded with the time of expression of the arrestin gene in the developmental stage. These results suggest that arrestin plays a vital role in the visual signal transduction pathway of the retina during ocular development. The expression of arrestin was strong in the ocular system during the entirety of the development stages. Our findings regarding arrestin have important implications with respect to its biological role and evolution of G-protein coupled receptor (GPCR) signaling in olive flounder. Further studies are required on the GPCR-mediated signaling pathway and to decipher the functional role of arrestin.

Bevacizumab Regulates Cancer Cell Migration by Activation of STAT3

  • Wu, Huan-Huan;Zhang, Shuai;Bian, Huan;Li, Xiao-Xu;Wang, Lin;Pu, Yin-Fei;Wang, Yi-Xiang;Guo, Chuan-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6501-6506
    • /
    • 2015
  • There are numerous clinical cases indicating that long-term use of bevacizumab may increase the invasiveness of tumors. However, to date, little is known about underlying molecular mechanisms. Therefore, the purpose of our study was to investigate effects of bevacizumab in four cancer cells lines (WSU-HN6, CAL27, Tca83, and HeLa). It was found to promote migration and invasion in the WSU-HN6 and Tca83 cases, while exerting inhibitory effects in CAL27 and HeLa cells. The signal transducer and activator of transcription (STAT) 3 inhibitors niclosamide and S3I-201 inhibited the STAT3 signal pathway, which is activated by bevacizumab. These inhibitors also substantially blocked bevacizumab-induced migration of WSU-HN6 and Tca83 cells. Bevacizumab upregulated interleukin (IL)-6 and phosphorylated (p)-STAT3 expression time-dependently. Therefore, we propose that bevacizumab has differential effects on the migration of different cancer cell lines and promotes migration via the IL-6/STAT3 signaling pathway.

Ethyl Acetate Fraction from Petasites japonicus Attenuates Oxidative Stress through Regulation of Nuclear Factor E2-Related Factor-2 Signal Pathway in LLC-PK1 Cells (머위 에틸아세테이트 분획물의 LLC-PK1 세포에서의 Nrf-2 매개 항산화 효과)

  • Kim, Ji Hyun;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Antioxidant effects and nuclear factor E2-related factor-2 (Nrf-2) signal pathway of methanol extract and 4 fractions [n-hexane, methylene chloride, ethyl acetate (EtOAc), and n-butanol fractions] from Petasites japonicus were investigated. The EtOAc fraction showed highest polyphenol and flavonoid contents among other fractions. In addition, EtOAc fraction showed stronger scavenging activity against superoxide anion radical than other fractions. Furthermore, we investigated antioxidants effects of the EtOAc fraction under cellular system using $LLC-PK_1$ cells. The EtOAc fraction dose-dependently increased the antioxidant protein expressions of heme oxygenase 1 (HO-1) and thioredoxin reductase 1 (TrxR1) known to be involved in oxidative stress, through activation of Nrf-2. The treatment of EtOAc fraction ($100{\mu}g/mL$) led to the elevation of the high expression of Nrf-2-dependent factor such as HO-1 and TrxR1. These results indicated that the EtOAc fraction of P. japonicus showed high antioxidant activity by regulation of Nrf-2 signaling pathway.

Upregulation of TNF-α by Triglycerides is Mediated by MEK1 Activation in Jurkat T Cells

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • Triglyceride (TG) is known to be associated with inflammatory disease including atherosclerosis. In a variety of atherosclerosis models, T lymphocytes are localized in the earliest lesions of atherosclerosis. T cell associated cytokines such as $TNF-{\alpha}$ and $IFN-{\gamma}$ have pre-dominant inflammatory effects in chronic vascular diseases. In our previous study, we found that the expression of $TNF-{\alpha}$ and its receptor, $TNF-{\alpha}R$ was increased when Jurkat T lymphocyte cell lines were exposed to TGs. Therefore, experiments were conducted to determine which cell signaling pathway are involved in the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs. To identify signal transduction pathways involved in TG-induced upregulation of $TNF-{\alpha}$, we treated TG-exposed Jurkat T cells with specific inhibitors for MEK1, PI3K, $NF-{\kappa}B$ and PKC. We found that inhibition of the MEK1 pathway blocked TG-induced upregulation of $TNF-{\alpha}$. However, the expression level of $TNF-{\alpha}R$ did not change with any signal transduction inhibitor. Based on this observation, we suggest that increase of exogenous TG induces increase of $TNF-{\alpha}$ expression through MEK1 pathway in Jurkat T cells. In addition, it was confirmed that the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs occurs via different pathways.

An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine

  • Li, Wenyu;Yin, Fan;Bu, Zixuan;Liu, Yuying;Zhang, Yongqing;Chen, Xiabing;Li, Shaowen;Li, Lu;Zhou, Rui;Huang, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.278-286
    • /
    • 2022
  • Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.

Hydrogen sulfide alleviates hypothyroidism-induced myocardial fibrosis in rats through stimulating autophagy and inhibiting TGF-β1/Smad2 pathway

  • Xiong Song;Liangui Nie;Junrong Long;Junxiong Zhao;Xing Liu;Liuyang Wang;Da Liu;Sen Wang;Shengquan Liu;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Hypothyroidism alone can lead to myocardial fibrosis and result in heart failure, but traditional hormone replacement therapy does not improve the fibrotic situation. Hydrogen sulfide (H2S), a new gas signaling molecule, possesses anti-inflammatory, antioxidant, and anti-fibrotic capabilities. Whether H2S could improve hypothyroidism-induced myocardial fibrosis are not yet studied. In our study, H2S could decrease collagen deposition in the myocardial tissue of rats caused by hypothyroidism. Furthermore, in hypothyroidism-induced rats, we found that H2S could enhance cystathionine-gamma-lyase (CSE), not cystathionine β-synthase (CBS), protein expressions. Finally, we noticed that H2S could elevate autophagy levels and inhibit the transforming growth factor-β1 (TGF-β1) signal transduction pathway. In conclusion, our experiments not only suggest that H2S could alleviate hypothyroidism-induced myocardial fibrosis by activating autophagy and suppressing TGF-β1/SMAD family member 2 (Smad 2) signal transduction pathway, but also show that it can be used as a complementary treatment to conventional hormone therapy.

The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis

  • Ganghye Park;Namgyu Kwon;Mi Hye Kim;Woong Mo Yang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.859-876
    • /
    • 2023
  • It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.

The effects of long term endurance or resistance exercise training on anabolic and catabolic pathway in skeletal muscle of middle-aged rats (장기간의 지구성 운동 또는 저항성 운동이 중년 흰쥐의 골격근 내 단백질 동화 및 이화기전에 미치는 영향)

  • Jung, Su-Ryun;Kim, Ki-Jin;Kho, Jin-Ho
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.6
    • /
    • pp.691-700
    • /
    • 2016
  • The purpose of this study was to investigate the effects of long-term endurance exercise or resistance exercise training on muscle anabolic/catabolic pathway. 50wks-old male Wistar rats(n=30) were randomly assigned for 3 groups (sedentary, endurance exercise, resistance exercise group). After 12-week of training, plantaris muscles were dissect to measure protein level. Akt/mTOR signal-related proteins were significantly increased only after resistance exercise training, but catabolic signal-related proteins, FoxO1 and MuRF1, were significantly decreased after resistance and endurance exercise training. After endurance exercise training, AMPK and PGC-1α protein levels were significantly increased. Therefore, the endurance exercise training has been shown to affect the protein balance of aging muscle through inhibition of muscle protein catabolism. The present results suggest the possibility that not only resistance exercise but also endurance exercise will be affectable to keep or increase muscle volume and capacity of middle-aged people.

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF