References
- Carmeliet P, Jain RK (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298-307. https://doi.org/10.1038/nature10144
- Chen Z, Han ZC (2008). STAT3: a critical transcription activator in angiogenesis. Med Res Rev, 28, 185-200. https://doi.org/10.1002/med.20101
- Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007). FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist, 12, 713-8. https://doi.org/10.1634/theoncologist.12-6-713
- de Groot JF, Fuller G, Kumar AJ, et al (2010). Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol, 12, 233-42. https://doi.org/10.1093/neuonc/nop027
- Desjardins A, Reardon DA, Herndon JN, et al (2008). Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. Clin Cancer Res, 14, 7068-73. https://doi.org/10.1158/1078-0432.CCR-08-0260
- Duran AO, Karaca H, Besiroglu M, et al (2014). XELOX plus bevacizumab vs. FOLFIRI plus bevacizumab treatment for first-line chemotherapy in metastatic colon cancer: a retrospective study of the Anatolian Society of Medical Oncology. Asian Pac J Cancer Prev, 15, 10375-9.
- Furuta T, Nakada M, Misaki K, et al (2014). Molecular analysis of a recurrent glioblastoma treated with bevacizumab. Brain Tumor Pathol, 31, 32-9. https://doi.org/10.1007/s10014-013-0142-4
- Gao L, Li FS, Chen XH, et al (2014). Radiation induces phosphorylation of STAT3 in a dose- and time-dependent manner. Asian Pac J Cancer Prev, 15, 6161-4. https://doi.org/10.7314/APJCP.2014.15.15.6161
- Garcia AA, Hirte H, Fleming G, et al (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol, 26, 76-82. https://doi.org/10.1200/JCO.2007.12.1939
- Gil MJ, de Las PR, Reynes G, et al (2012). Bevacizumab plus irinotecan in recurrent malignant glioma shows high overall survival in a multicenter retrospective pooled series of the Spanish Neuro-Oncology Research Group (GEINO). Anticancer Drugs, 23, 659-65. https://doi.org/10.1097/CAD.0b013e3283534d3e
- Grivennikov S, Karin M (2008). Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell, 13, 7-9. https://doi.org/10.1016/j.ccr.2007.12.020
- Hainsworth JD, Shih KC, Shepard GC, et al (2012). Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/everolimus as first-line treatment for patients with glioblastoma. Clin Adv Hematol Oncol, 10, 240-6.
- Hein M, Graver S (2013). Tumor cell response to bevacizumab single agent therapy in vitro. Cancer Cell Int, 13, 94. https://doi.org/10.1186/1475-2867-13-94
- Hurwitz H, Fehrenbacher L, Novotny W, et al (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 350, 2335-42. https://doi.org/10.1056/NEJMoa032691
- Ishida J, Onishi M, Kurozumi K, et al (2014). Integrin inhibitor suppresses bevacizumab-induced glioma invasion. Transl Oncol, 7, 292-302. https://doi.org/10.1016/j.tranon.2014.02.016
- Iwamoto FM, Abrey LE, Beal K, et al (2009). Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurol, 73, 1200-6. https://doi.org/10.1212/WNL.0b013e3181bc0184
- Keating GM (2014). Bevacizumab: a review of its use in advanced cancer. Drugs, 74, 1891-925. https://doi.org/10.1007/s40265-014-0302-9
- Keunen O, Johansson M, Oudin A, et al (2011). Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A, 108, 3749-54. https://doi.org/10.1073/pnas.1014480108
- Lai A, Tran A, Nghiemphu PL, et al (2011). Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol, 29, 142-8. https://doi.org/10.1200/JCO.2010.30.2729
- Lucio-Eterovic AK, Piao Y, de Groot JF (2009). Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res, 15, 4589-99. https://doi.org/10.1158/1078-0432.CCR-09-0575
- Miletic H, Niclou SP, Johansson M, Bjerkvig R (2009). Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opin Ther Targets, 13, 455-68. https://doi.org/10.1517/14728220902806444
- Mrugala MM (2009). Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurol, 72, 773-4.
- Narayana A, Kelly P, Golfinos J, et al (2009). Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg, 110, 173-80. https://doi.org/10.3171/2008.4.17492
- Pandurangan AK, Esa NM (2014). Signal transducer and activator of transcription 3 - a promising target in colitisassociated cancer. Asian Pac J Cancer Prev, 15, 551-60. https://doi.org/10.7314/APJCP.2014.15.2.551
- Pan JX, Ding K, Wang CY (2012). Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer, 31, 178-84. https://doi.org/10.5732/cjc.011.10290
- Piao Y, Liang J, Holmes L, et al (2012). Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol, 14, 1379-92. https://doi.org/10.1093/neuonc/nos158
- Piao Y, Liang J, Holmes L, et al (2013). Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res, 19, 4392-403. https://doi.org/10.1158/1078-0432.CCR-12-1557
- Sen M, Joyce S, Panahandeh M, et al (2012). Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res, 18, 4986-96. https://doi.org/10.1158/1078-0432.CCR-12-0792
- Shao H, Cheng HY, Cook RG, Tweardy DJ (2003). Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor. Cancer Res, 63, 3923-30.
- Siddiquee K, Zhang S, Guida WC, et al (2007). Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A, 104, 7391-6. https://doi.org/10.1073/pnas.0609757104
- Simon T, Coquerel B, Petit A, et al (2014). Direct effect of bevacizumab on glioblastoma cell lines in vitro. Neuromolecular Med, 16, 752-71. https://doi.org/10.1007/s12017-014-8324-8
- Wang SW, Sun YM (2014). The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol, 44, 1032-40.
- Wedam SB, Low JA, Yang SX, et al. (2006). Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol, 24, 769-77. https://doi.org/10.1200/JCO.2005.03.4645
- Willett CG, Boucher Y, di Tomaso E, et al (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med, 10, 145-7. https://doi.org/10.1038/nm988
- Yu CL, Meyer DJ, Campbell GS, et al (1995). Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science, 269, 81-3. https://doi.org/10.1126/science.7541555
- Zhou Y, Tian L, Zhang YC, et al (2014). Apoptotic effects of psiRNA-STAT3 on 4T1 breast cancer cells in vitro. Asian Pac J Cancer Prev, 15, 6977-82. https://doi.org/10.7314/APJCP.2014.15.16.6977
Cited by
- Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties pp.2168-8370, 2018, https://doi.org/10.1080/21688370.2018.1479568