• Title/Summary/Keyword: Signal intensity(SI)

Search Result 69, Processing Time 0.02 seconds

Relationship between Hospital Safety Symbol Shapes and Memory (병원 안전 심볼의 형태와 기억과의 관계)

  • Seok-Hwan Bae;Myung-Chul Park;Jae-Sang You;Yong-Gwon Kim;Cheul-Ho Ryoo;Dong-Hyun Oh
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • The purpose of this study was to examine the association between the shapes and colors of emergency exit symbols, magnetic field warning symbols, and radiation zone symbols used in hospitals for staff and patient safety and their effects on cognitive memory. The hippocampal region's signal intensity(SI) was analyzed using fMRI. The Symbol 2 (1.75±0.54) with a green background had the highest signal intensity (SI) for emergency exits, according to the findings. The black symbol 2 (1.60±0.51) with a yellow background had the highest signal intensity (SI) for the magnetic field warning symbol, followed by the black symbol 1 (1.59±0.65) with an orange background. The black symbol 2 (1.59±0.59) with a yellow background and the black symbol 3 (1.58±0.52) with an orange background had the low signal intensity with slight differences as for the radiation zone symbols. In conclusion, it was determined that the signal intensity of the black symbol with a yellow background was the highest in the magnetic field area and radiation area. This implies that symbols with a high signal intensity (SI) must be utilized intensively. To ensure that the correct meaning of the symbols is communicated in the future, they must also be utilized regularly and continually in disaster safety education.

Magnetic resonance images of ameloblastoma

  • Kim Jae-Duk;Kim Jin-Soo
    • Imaging Science in Dentistry
    • /
    • v.35 no.4
    • /
    • pp.207-213
    • /
    • 2005
  • Purpose: To classify and describe the characteristic features of MRI of some ameloblastoma variants. Materials and Methods: The MR images, CT images, and panoramic radiographs in 5 cases were retrospectively examined as follows. First, the contents of ameloblastomas were devided into two portions of either solid or cystic components on the basis of MR signal intensities. The signal intensity within the solid or cystic portions was classified as homogeneous or heterogeneous. Next, the characteristic internal feature of the lesion on T1W1 or T2WI was described. The signal intensities were classified into low, intermediate, slightly high, high, and strong high signal intensity. Results: Unicystic lesion showed homogeneous high signal intensity (SI) on T2W2 and the rim enhancement of the surrounding area including the mural nodule and the thick wall except the central portion on Gd- T1W1. Solid type revealed heterogeneous and high SI area with strong high SI area on T2W2. On Gd- T1W1, the area corresponding to the low signal spot on T1W1 and the strong high signal spot on T2W1 showed low SI. Hybrid type showed slightly enhanced capsular structures and low SI for the round bony septa and the areas connecting the mixed and cystic lesions on T2Wl and Gd-T1W1. Conclusion: MRI could easily assess the relationship between the mixed and cystic findings in ameloblastoma.

  • PDF

Knock Characteristics and Measurement of Knock Location in a 4-Valve SI Engine (4-Valve SI 엔진의 Knock 특성 및 Knock 발생부위 측정)

  • 이경환;이시훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.153-161
    • /
    • 1998
  • The knock in a spark ignition engine has been investigated to avoid the damage to the engine and unpleasant feeling caused by the pressure waves propagating across the combustion chamber. Knock intensity and knock onset angle were used as physical parameters to quantify the knock characteristics. The knock intensity is defined as a peak to peak value of the bank pass filtered combustion pressure signal and the knock onset angle is determined as the crank angle at which this signal exceeded the threshold level on each cycle. The cyclic variation of knock in four valve single cylinder engine was investigated with these two parameters. The location of autoignition was also examined by ion probes in the cylinder head gasket and squish region in the combustion chamber. For this measurement, a single cylinder engine was modified to accept the pressure transducer, 18 ion probes in the squish region and 8 ion probes in the specially designed PCB (Printed \ulcornerCircuit Board) cylinder head gasket.

  • PDF

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

Improvement of Noise Characteristics in Super-RENS Disc (Super-RENS 디스크의 노이즈 특성 향상)

  • Kim, Joo-Ho;Hwang, In-Oh;Kim, Hyun-Ki;Park, In-Sik;Bae, Jae-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • The research topic of super-RENS technology is shifting from the signal intensity (CNR; Carrier to Noise Ratio) to the signal uniformity (Jitter or bER). To achieve an uniform signal characteristics, it is important to reduce signal fluctuation in a super-RENS disc. In this study, we investigated the relation between signal fluctuation and low frequency noise (LFN), and analyzed LFN increase in recording and readout processes. It was found that signal fluctuation had a close relationship with the LFN. Also, it was found that the recorded mark shape such a bubble type and high readout power increased the LFN in recording and readout process of a super-RENS disc. So, using non-bubble type recording material and low super-resolution readout material, we markedly improved the LFN in a super-RENS disc.

  • PDF

APPLICATION OF SOUND INTENSITY METHOD TO NOISE CONTROL ENGINEERING AND BUILDING ACOUSTICS

  • Tachibana, Hideki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.7-15
    • /
    • 1995
  • Sound pressure and particle velocity are the most essential quantities prescribing a sound field; they correspond to voltage and electric current respectively, in electric system. As electric power is the product of voltage and electric current, sound intensity is the product of sound pressure and particle velocity and it means the acoustic power passing through a unit area in a sound field. Although the definition of sound intensity is very simple as mentioned above, the method of measuring this quantity has not been realized for a long time, because it has been very difficult to measure the particle velocity simultaneously with the sound pressure. Owing to the recent development of such technologies as transducer production and digital signal processing, it has finally been realized. According to the sound intensity(SI) method, the sound power flow in an arbitrary sound field can be directly measured as a vector quantify. In this paper, the principle of the SI method is briefly explained at first and some examples of its application made in the author's laboratory are introduced.

  • PDF

Surface Photovoltage in Electron Beam Irradiation Semi-insulating GaAs

  • Yu, Jae-In;Lim, Jin-Hwan;Yu, Jae-Yong;Kim, Ki-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.543-545
    • /
    • 2006
  • Surface photovoltage (SPV) measurements were performed to investigate the optic-electrical properties in the electron beam irradiation semi-insulating GaAs (e-beam irradiation SI-GaAs) and semi-insulating GaAs (SI-GaAs). The signal intensity showed stronge. dependency on the frequency in the SI-GaAs than it did in the e-beam irradiation SI-GaAs. This result indicates that the number of the generated photo-carriers depends on the surface state. Also, the B region of the e-beam irradiation SI-GaAs found a weak signal. This result was explained by the surface and internal damage with e-beam irradiation.

Study of Apparent Diffusion Coefficient Changes According to Spinal Disease in MR Diffusion-weighted Image

  • Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.146-149
    • /
    • 2017
  • In this study, we compared the standardized value of each signal intensity, the apparent diffusion coefficient (ADC) that digitizes the diffusion of water molecules, and the signal to noise ratio (SNR) using b value 0 400, 1400 ($s/mm^2$). From March 2013 to December 2013, patients with suspicion of simple compound fracture and metastatic spine cancer were included in the MR readout. We used a 1.5 Tesla Achieva MRI system and a Syn-Spine Coil. Sequence is a DWI SE-EPI sagittal (diffusion weighted imaging spin echo-echo planar imaging sagittal) image with b-factor ($s/mm^2$) 0, 400, 1400 were used. Data analysis showed ROI (Region of Interest) in diseased area with high SI (signal intensity) in diffusion-weighted image b value 0 ($s/mm^2$) Using the MRIcro program, each SI was calculated with images of b-value 0, 400, and 1400 ($s/mm^2$), ADC map was obtained using Metlab Software with each image of b-value, The ADC is obtained by applying the ROI to the same position. The standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of simple compression fractures were $0.47{\pm}0.04$ and $0.23{\pm}0.03$ and the standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of the metastatic spine were $0.57{\pm}0.07$ and $0.32{\pm}0.08$ And the standardized values of the two diseases were statistically significant (p < 0.05). The ADC ($mm^2/s$) for b value 400 ($s/mm^2$) and 1400 ($s/mm^2$) of the simple compression fracture disease site were $1.70{\pm}0.16$ and $0.93{\pm}0.28$ and $1.24{\pm}0.21$ and $0.80{\pm}0.15$ for the metastatic spine. The ADC ($mm^2/s$) for b value 400($s/mm^2$) was statistically significant (p < 0.05) but the ADC ($mm^2/s$) for b value 1400 (p > 0.05). In conclusion, multi - b value recognition of signal changes in diffusion - weighted imaging is very important for the diagnosis of various spinal diseases.

Does Intramedullary Signal Intensity on MRI Affect the Surgical Outcomes of Patients with Ossification of Posterior Longitudinal Ligament?

  • Choi, Jae Hyuk;Shin, Jun Jae;Kim, Tae Hong;Shin, Hyung Shik;Hwang, Yong Soon;Park, Sang Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • Objectives : Patients with cervical ossification of posterior longitudinal ligament (OPLL) are susceptible to cord injury, which often develops into myelopathic symptoms. However, little is known regarding the prognostic factors that are involved in minor trauma. We evaluated the relationship between minor trauma and neurological outcome of OPLL and investigated the prognostic factors with a focus on compressive factors and intramedullary signal intensity (SI). Methods : A total of 74 patients with cervical myelopathy caused by OPLL at more than three-levels were treated with posterior decompression surgeries. We surveyed the space available for spinal cord (SAC), the severity of SI change on T2-weighted image, and diabetes mellitus (DM). The neurological outcome using Japanese Orthopedic Association (JOA) scale was assessed at admission and at 12-month follow-up. Results : Among the variables tested, preoperative JOA score, severity of intramedullary SI, SAC, and DM were significantly related to neurological outcome. The mean preoperative JOA were $11.3{\pm}1.9$ for the 41 patients who did not have histories of trauma and $8.0{\pm}3.1$ for the 33 patients who had suffered minor traumas (p<0.05). However, there were no significant differences in the recovery ratios between those two groups. Conclusions : Initial neurological status and high intramedullary SI in the preoperative phase were related to poorer postoperative outcomes. Moreover, the patients with no histories of DM and larger SACs exhibited better improvement than did the patients with DM and smaller SACs. Although the initial JOA scores were worse for the minor trauma patients than did those who had no trauma prior to surgery, minor trauma exerted no direct effects on the surgical outcomes.

Quantitative Analysis of GBCA Reaction by Mol Concentration Change on MRI Sequence (MRI sequence에 따른 GBCA 몰농도별 반응에 대한 정량적 분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • In this paper, we introduce how to change the reaction rate as mol concentration when we scan enhanced MRI with GBCA(Gadolinium Based Contrast Agent), Also show the changing patterns depending on diverse MRI sequences which are made by different physical principle. For this study, we made MRI phantom ourselves. We mixed 500 mmol Gadoteridol with Saline in each 28 different containers from 500 to 0 mmol. After that, MR phantom was scanned by physically different MRI sequences which are T1 SE, T2 FLAIR, T1 FLAIR, 3D FLASH, T1 3D SPACE and 3D SPCIR in 1.5T bore. The results were as follows : *T1 Spin echo's Total SI(Signal Intensity) was 15608.7, Max peak was 1352.6 in 1 mmol. *T2 FLAIR's Total SI was 9106.4, Max peak was 0.4 1721.6 in 1 mmol. *T1 FLAIR's Total SI was 20972.5, Max peak was 1604.9 in 1 mmol. *3D FLASH's Total SI was 20924.0, Max peak was 1425.7 in 40 mmol. *3D SPACE 1mm's Total SI was 6399.0, Max peak was 528.3 in 3 mmol. *3D SPACE 5mm's Total SI was 6276.5, Max peak was 514.6 in 2 mmol. *3D SPCIR's Total SI was 1778.8, Max peak was 383.8 in 0.4 mmol. In most sequences, High signal intensity was shown in diluted lower concentration rather than high concentration, And also graph's max peak and pattern had difference value according to the each different sequence. Through this paper which have quantitative result of GBCA's reaction rate depending on sequence, We expect that practical enhanced MR protocol can be performed in clinical field.