• Title/Summary/Keyword: Signal and statistical process

Search Result 101, Processing Time 0.03 seconds

Procedure for monitoring special causes and readjustment in ARMA(1,1) noise model (자기회귀이동평균(1,1) 잡음모형에서 이상원인 탐지 및 재수정 절차)

  • Lee, Jae-Heon;Kim, Mi-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.841-852
    • /
    • 2010
  • An integrated process control (IPC) procedure is a scheme which simultaneously applies the engineering control procedure (EPC) and statistical control procedure (SPC) techniques to reduce the variation of a process. In the IPC procedure, the observed deviations are monitored during the process where adjustments are repeatedly done by its controller. Because the effects of the noise, the special cause, and the adjustment are mixed, the use and properties of the SPC procedure for the out-of-control process are complicated. This paper considers efficiency of EWMA charts for detecting special causes in an ARMA(1,1) noise model with a minimum mean squared error adjustment policy. And we propose the readjustment procedure after having a true signal. This procedure can be considered when the elimination of the special cause is not practically possible.

A Study on Quality Classification of Injection Molding Process by Kalman Filter (Kalman Filter를 이용한 사출성형 제품의 품질 분류에 대한 연구)

  • Shin, Bong Deug;Oh, Hyuk Jun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.635-640
    • /
    • 2016
  • It is important factors for a production system to get a profitable result in quality and reliability process. For this reason, there's are various type of research papers in a certain type of data acquisition and application to reliability and quality of the level of M2M devices. In general, a classification problem of slightly different signal such as sensing data is difficult to do with classical statistical methods. There's required real-time and instantaneous calculation properties in machine process. Especially a type of injection molding machine which has a property to be decided in accordance with short-term cycle process needs a solution that can be done a certain type of decision like as good or bad quality immediately. This paper presents a simple application of Kalman Filtering by single sensing data to injection molding process in order to get a correct answer from the real time sensing data.

Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network (주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템)

  • Lee, Kyeong-Min;Vununu, Caleb;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

A Study on the Experimental Application of the Artificial Neural Network for the Process Improvement (공정개선을 위한 인공신경망의 실험적 적용에 관한 연구)

  • 한우철
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.174-183
    • /
    • 2002
  • In this paper a control chart pattern recognition methodology based on the back propagation algorithm and Multi layer perceptron, a neural computing theory, is presented. This pattern recognition algorithm, suitable for real time statistical process control. evaluates observations routinely collected for control charting to determine whether a Pattern, such as a cycle. trend or shift, which is exists in the data. This approach is promising because of its flexible training and high speed computation with low-end workstation. The artificial neural network methodology is developed utilizing the delta learning rule, sigmoid activation function with two hidden layers. In a computer integrated manufacturing environment, the operator need not routinely monitor the control chart but, rather, can be alerted to patterns by a computer signal generated by the proposed system.

  • PDF

Performance Analysis of a Statistical Packet Voice/Data Multiplexer (통계적 패킷 음성 / 데이터 다중화기의 성능 해석)

  • 신병철;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.3
    • /
    • pp.179-196
    • /
    • 1986
  • In this paper, the peformance of a statistical packet voice/data multiplexer is studied. In ths study we assume that in the packet voice/data multiplexer two separate finite queues are used for voice and data traffics, and that voice traffic gets priority over data. For the performance analysis we divide the output link of the multiplexer into a sequence of time slots. The voice signal is modeled as an (M+1) - state Markov process, M being the packet generation period in slots. As for the data traffic, it is modeled by a simple Poisson process. In our discrete time domain analysis, the queueing behavior of voice traffic is little affected by the data traffic since voice signal has priority over data. Therefore, we first analyze the queueing behavior of voice traffic, and then using the result, we study the queueing behavior of data traffic. For the packet voice multiplexer, both inpur state and voice buffer occupancy are formulated by a two-dimensional Markov chain. For the integrated voice/data multiplexer we use a three-dimensional Markov chain that represents the input voice state and the buffer occupancies of voice and data. With these models, the numerical results for the performance have been obtained by the Gauss-Seidel iteration method. The analytical results have been verified by computer simylation. From the results we have found that there exist tradeoffs among the number of voice users, output link capacity, voic queue size and overflow probability for the voice traffic, and also exist tradeoffs among traffic load, data queue size and oveflow probability for the data traffic. Also, there exists a tradeoff between the performance of voice and data traffics for given inpur traffics and link capacity. In addition, it has been found that the average queueing delay of data traffic is longer than the maximum buffer size, when the gain of time assignment speech interpolation(TASI) is more than two and the number of voice users is small.

  • PDF

A Study on Fault Detection of Cycle-based Signals using Wavelet Transform (웨이블릿을 이용한 주기 신호 데이터의 이상 탐지에 관한 연구)

  • Lee, Jae-Hyun;Kim, Ji-Hyun;Hwang, Ji-Bin;Kim, Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • Fault detection of cycle-based signals is typically performed using statistical approaches. Univariate SPC using few representative statistics and multivariate analysis methods such as PCA and PLS are the most popular methods for analyzing cycle-based signals. However, such approaches are limited when dealing with information-rich cycle-based signals. In this paper, process fault defection method based on wavelet analysis is proposed. Using Haar wavelet, coefficients that well reflect the process condition are selected. Next, Hotelling's $T^2$ chart using selected coefficients is constructed for assessment of process condition. To enhance the overall efficiency of fault detection, the following two steps are suggested, i.e. denoising method based on wavelet transform and coefficient selection methods using variance difference. For performance evaluation, various types of abnormal process conditions are simulated and the proposed algorithm is compared with other methodologies.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Empirical Mode Decomposition using the Second Derivative (이차 미분을 이용한 경험적 모드분해법)

  • Park, Min-Su;Kim, Donghoh;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.335-347
    • /
    • 2013
  • There are various types of real world signals. For example, an electrocardiogram(ECG) represents myocardium activities (contraction and relaxation) according to the beating of the heart. ECG can be expressed as the fluctuation of ampere ratings over time. A signal is a composite of various types of signals. An orchestra (which boasts a beautiful melody) consists of a variety of instruments with a unique frequency; subsequently, each sound is combined to form a perfect harmony. Various research on how to to decompose mixed stationary signals have been conducted. In the case of non-stationary signals, there is a limitation to use methodologies for stationary signals. Huang et al. (1998) proposed empirical mode decomposition(EMD) to deal with non-stationarity. EMD provides a data-driven approach to decompose a signal into intrinsic mode functions according to local oscillation through the identification of local extrema. However, due to the repeating process in the construction of envelopes, EMD algorithm is not efficient and not robust to a noise, and its computational complexity tends to increase as the size of a signal grows. In this research, we propose a new method to extract a local oscillation embedded in a signal by utilizing the second derivative.

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.