• Title/Summary/Keyword: Signal Subspace

Search Result 114, Processing Time 0.02 seconds

Signal Subspace-based Voice Activity Detection Using Generalized Gaussian Distribution (일반화된 가우시안 분포를 이용한 신호 준공간 기반의 음성검출기법)

  • Um, Yong-Sub;Chang, Joon-Hyuk;Kim, Dong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper we propose an improved voice activity detection (VAD) algorithm using statistical models in the signal subspace domain. A uncorrelated signal subspace is generated using embedded prewhitening technique and the statistical characteristics of the noisy speech and noise are investigated in this domain. According to the characteristics of the signals in the signal subspace, a new statistical VAD method using GGD (Generalized Gaussian Distribution) is proposed. Experimental results show that the proposed GGD-based approach outperforms the Gaussian-based signal subspace method at 0-15 dB SNR simulation conditions.

Statistical Voice Activity Defector Based on Signal Subspace Model (신호 준공간 모델에 기반한 통계적 음성 검출기)

  • Ryu, Kwang-Chun;Kim, Dong-Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.372-378
    • /
    • 2008
  • Voice activity detectors (VAD) are important in wireless communication and speech signal processing, In the conventional VAD methods, an expression for the likelihood ratio test (LRT) based on statistical models is derived in discrete Fourier transform (DFT) domain, Then, speech or noise is decided by comparing the value of the expression with a threshold, This paper presents a new statistical VAD method based on a signal subspace approach, The probabilistic principal component analysis (PPCA) is employed to obtain a signal subspace model that incorporates probabilistic model of noisy signal to the signal subspace method, The proposed approach provides a novel decision rule based on LRT in the signal subspace domain, Experimental results show that the proposed signal subspace model based VAD method outperforms those based on the widely used Gaussian distribution in DFT domain.

Spatial Spectrum Estimation of Broadband Incoherent Signals using Rotation of Signal Subspace Via Signal Enhancement (신호부각에 의한 신호 부공간 회전을 이용한 광대역 인코히어런트 신호의 공간 스펙트럼 추정)

  • 김영수;이계산;김정근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.669-676
    • /
    • 2004
  • In this paper, a new algorithm is proposed for resolving multiple broadband incoherent sources incident on a uniform linear array. The proposed method dose not require any initial estimates for finding the transformation matrix, while the Coherent Signal-Subspace Method(CSM) proposed by Wang and Kaveh requires preliminary estimates of multigroup source location. An effective procedure is derived for finding the enhanced spectral density matrix at the center frequency using signal enhancement approach and then constructing a common signal subspace by selecting a unitary transformation matrix which is obtained via rotation of signal subspace method. The proposed approach is found to provide superior performance relative to that obtained with the CSM method in terms of sample bias of direction-of-arrival estimates.

MUSIC-Based Direction Finding through Simple Signal Subspace Estimation (간단한 신호 부공간 추정을 통한 MUSIC 기반의 효과적인 도래방향 탐지)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • The MUSIC (MUltiple SIgnal Classification) method estimates the directions of arrival (DOAs) of the signals impinging on a sensor array based on the fact that the noise subspace is orthogonal to the signal subspace. In the conventional MUSIC, an estimate of the basis for the noise subspace is obtained by eigendecomposing the sample matrix, which is computationally expensive. In this paper, we present a simple DOA estimation method which finds an estimate of the signal subspace basis directly from the columns of the sample matrix from which the noise power components are removed. DOA estimates are obtained by searching for minimum points of a cost function which is defined using the estimated signal subspace basis. The minimum points are efficiently found through the Brent method which employs parabolic interpolation. Simulation shows that the simple estimation method virtually has the same performance as the complex conventional method based on the eigendecomposition.

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm for the Better Subspace Estimation Accuracy

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.25-29
    • /
    • 2008
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimatesthe signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. In this paper, we propose a new algorithm to improve the subspace estimation accuracy using a normally ordered input vector and a reversely ordered input vector simultaneously.

Subspace-Based Adaptive Beamforming with Off-Diagonal Elements (비 대각요소를 이용한 부공간에서의 적응 빔 형성 기법)

  • Choi Yang-Ho;Eom Jae-Hyuck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.84-92
    • /
    • 2004
  • Eigenstructure-based adaptive beamfoming has advantages of fast convergence and the insentivity to errors in the arrival angle of the desired signal. Eigen-decomposing the sample matrix to extract a basis for the Sl (signal plus interference) subspace, however, is very computationally expensive. In this paper, we present a simple subspace based beamforming which utilizes off-diagonal elements of the sample matrix to estimate the Sl subspace. The outputs of overlapped subarrays are combined to produce the final adaptive output, which improves SINR (signal-to-interference-plus-noise ratio) comapred to exploiting a single subarray. The proposed adaptive beamformer, which employs an efficient angle estimation is very roubust to errors in both the arrival angles and the number of the incident signals, while the eigenstructure-based beamforer suffers from severe performance degradation.

Multiple Target Angle Tracking Algorithm Using Angular Innovation Extracted from Signal Subspace (신호 부공간에서 구한 방위각 이노베이션을 이용한 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo;Lee, Su-Hyoung;Lee, Kyun-Kyung
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.20-26
    • /
    • 1999
  • In this paper, a multiple target angle tracking algorithm that can avoid data association problem and has a simple structure is proposed by obtaining the angular innovation of the targets from a signal subspace. The signal subspace is recursively estimated by a signal subspace tracking algorithm, such as PAST. A nonlinear matrix equation which satisfy the estimated signal subspace and the angular innovation is induced and expanded into a Taylor series for linear approximation. The angular innovation is obtained by solving the approximated linear matrix equation in the least square sense. The good performance of the proposed algorithm is demonstrated by various computer simulations.

  • PDF

A Signal Subspace Interference Alignment Scheme with Sum Rate Maximization and Altruistic-Egoistic Bayesian Gaming

  • Peng, Shixin;Liu, Yingzhuang;Chen, Hua;Kong, Zhengmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1926-1945
    • /
    • 2014
  • In this paper, we propose a distributed signal subspace interference alignment algorithm for single beam K-user ($3K{\geq}$) MIMO interference channel based on sum rate maximization and game theory. A framework of game theory is provided to study relationship between interference signal subspace and altruistic-egoistic bayesian game cost function. We demonstrate that the asymptotic interference alignment under proposed scheme can be realized through a numerical algorithm using local channel state information at transmitters and receivers. Simulation results show that the proposed scheme can achieve the total degrees of freedom that is equivalent to the Cadambe-Jafar interference alignment algorithms with perfect channel state information. Furthermore, proposed scheme can effectively minimize leakage interference in desired signal subspace at each receiver and obtain a moderate average sum rate performance compared with several existing interference alignment schemes.

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).