• Title/Summary/Keyword: Signal Direction

Search Result 973, Processing Time 0.025 seconds

Performance Enhancement of Speech Intelligibility in Communication System Using Combined Beamforming (directional microphone) and Speech Filtering Method (방향성 마이크로폰과 음성 필터링을 이용한 통신 시스템의 음성 인지도 향상)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.334-337
    • /
    • 2005
  • The speech intelligibility is one of the most important factors in communication system. The speech intelligibility is related with speech to noise ratio. To enhance the speech to noise ratio, background noise reduction techniques are being developed. As a part of solution to noise reduction, this paper introduces directional microphone using beamforming method and speech filtering method. The directional microphone narrows the spatial range of processing signal into the direction of the target speech signal. The noise signal located in the same direction with speech still remains in the processing signal. To sort this mixed signal into speech and noise, as a following step, a speech-filtering method is applied to pick up only the speech signal from the processed signal. The speech filtering method is based on the characteristics of speech signal itself. The combined directional microphone and speech filtering method gives enhanced performance to speech intelligibility in communication system.

  • PDF

Study on the direction detection based on audible and non-audible signals using smart devices (스마트 디바이스를 활용한 가청, 비가청 신호 기반 피난방향 탐지 기법 연구)

  • Hyun, Byeongchun;Yun, Younguk;Park, Yohan;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • This paper proposes a direction estimation scheme with directional speaker and smart device for evacuation guidance. When there is worst disaster environment filled with smoke and noisy sound, evacuee can not get any information about evacuation routes. The proposed scheme can be used for detecting evacuation routes with audible and inaudible signal from directional speaker. At this point, evacuee can get evacuee guidance by using smartphone application that the proposed scheme is applied. The performance of the proposed scheme is evaluated by experiment with three different types of smart devices in large indoor environment. The purpose of experiment is to detect the direction of transmitted signal from directional speaker. Therefore, The experiment is conducted by analyzing the strength of transmitted signal by distance. The experimental results show that even if the smart device is located up to 20m away from the speaker, it is possible to detect the sending direction of the signal. We confirmed the possibility of the proposed technology in 8kHz and 20kHz signal detection by smart device.

Image Enhancement Using Human Visual Perception (인간 시각의 인지 특성을 이용한 영상 화질 향상 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.206-217
    • /
    • 2018
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multiband energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

A Study on the Robust Real-Time Signal Processor of a Laser Doppler Vibrometer for Noises (노이즈에 둔감한 레이저 진동계측기용 실시간 신호처리 장치에 관한 연구)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.61-67
    • /
    • 1999
  • A laser Doppler vibrometer based on the laser heterodyne interferometry is employed to measure the vibration velocity of vibrating objects. In this paper, we propose a real time analog signal processor of a laser Doppler vibrometer to reduce the degradation of Doppler signals mainly caused by environmental noises. In the proposed real time signal processor of an laser Doppler vibrometer, a pre-processor and a logical motion direction detector are designed to reduce the detection errors of the object motion direction. Also, a noise detection and rejection circuit is designed to reject the unfiltered noises.

  • PDF

A Study on Multi-Signal DOA Estimation in Fading Channels

  • Lee Kwan-Houng;Song Woo-Young
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.115-118
    • /
    • 2005
  • In this study, the proposed algorithm is a correlativity signal in a mobile wireless channel that has estimated the direction of arrival. The proposed algorithm applied the space average method in a MUSIC algorithm. The diagonal matrix of the space average method was changed to inverse the matrix and to obtain a new signal correlation matrix. The existing algorithm was analyzed and compared by applying a proposed signal correlation matrix to estimate the direction of arrival in a MUSIC algorithm. The experiment resulted in a proposed algorithm with a min-norm method resolution at more than $5^{\circ}$. It improved more than $2^{\circ}$ in a MUSIC algorithm.

A Study about Direction Estimate Device of the Sound Source using Input Time Difference by Microphones′ Arrangement (마이크로폰 배열로 발생되는 입력 시간차를 이용한 음원의 방향 추정 장치에 관한 연구)

  • 윤준호;최기훈;유재명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.91-98
    • /
    • 2004
  • Human uses level difference and time difference to get space information. Therefore this paper shows that method to presume direction of sound source by time difference and to mark presumed position. The position means direction from geometrical center of sensors to the sound source. To get the time difference of microphones input level, we will be explained about arrangement of microphones which used for the sensor to take the sound signal. It is included distance among the 3 microphones and distance between microphones and sound source. Secondly, input signals are transmitted to CPU througth digital process. CPU is used to DSP(Digital Signal Processor) for manage the signal by real time. Finally, the position of sound source is perceived by an explained algorithm in this paper.

Target signal detection using MUSIC spectrum in noise environments (MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출)

  • Park, Sang-Jun;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

Direction of Arrival Estimation of GNSS Signal using Dual Antenna

  • Ong, Junho;So, Hyoungmin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.215-220
    • /
    • 2020
  • This paper deal with estimating the direction of arrival (DOA) of GNSS signal using two antennae for spoofing detection. A technique for estimating the azimuth angle of a received signal by applying the interferometer method to the GPS carrier signal is proposed. The experiment assumes two antennas placed on the earth's surface and estimates the azimuth angle when only GPS signal are received without spoofing signal. The proposed method confirmed the availability through GPS satellite placement simulation and experiments using a dual antenna GPS receiver. In this case of using dual antenna, an azimuth angle ambiguity of the received signal occurs with respect to the baseline between two antennas. For this reason, the accurate azimuth angle estimation is limits, but it can be used for deception by cross-validating the ambiguity.

On the Utilization of Polarization Dependency Acquired by an Intentionally Misaligned Antenna Array for Mitigation of GPS Jammers

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, the dual-polarized antenna array has drawn attention due to the dependency of its signal processing gain on the signal polarization. Even though this polarization dependency makes it possible to mitigate a non-right-hand circularly polarized (non-RHCP) jamming signal from the same direction as a GPS signal, the dual-polarized antennas are not yet widely used for various applications. This study suggests a method that can acquire the polarization dependency of the signal-processing gain by intentionally misaligning antenna elements in a single-polarized antenna array. The simulation results show that the proposed method can successfully mitigate a non-RHCP jammer from the same direction as a GPS signal as if a dual-polarized antenna array does and provide comparable signal-to-jammer-plus-noise ratio (SJNR) performance with a completely aligned single-polarized antenna array and a dual-polarized antenna array.

An Accidental Position Detection Algorithm for High-Pressure Equipment using Microphone Array (Microphone Array를 이용한 고압설비의 고장위치인식 알고리즘)

  • Kim, Deuk-Kwon;Han, Sun-Sin;Ha, Hyun-Uk;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2300-2307
    • /
    • 2008
  • This study receives the noise transmitted in a constant audio frequency range through a microphone array in which the noise(like grease in a pan) occurs on the power supply line due to the troublesome partial discharge(arc). Then by going through a series of signal processing of removing noise, this study measures the distance and direction up to the noise caused by the troublesome partial discharge(arc) and monitors the result by displaying in the analog and digital method. After these, it determines the state of each size and judges the distance and direction of problematic part. When the signal sound transmitted by the signal source of bad insulator is received on each microphone, the signal comes only in the frequency range of 20 kHz by passing through the circuit of amplification and 6th low pass filter. Then, this signal is entered in a digital value of digital signal processing(TMS320F2812) through the 16-bit A/D conversion. By doing so, the sound distance, direction and coordinate of bad insulator can be detected by realizing the correlation method of detecting the arriving time difference occurring on each microphone and the algorithm of detecting maximum time difference.