• Title/Summary/Keyword: Signal Compression

Search Result 560, Processing Time 0.028 seconds

A Development of Stroke Sensing Cylinder for Position Control Using Magnetic Sensor (I) (자기센서를 이용한 위치제어용 스트로크 측정 실린더 개발(I))

  • Lee, M.C.;Choi, Y.J.;Lee, M.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.136-144
    • /
    • 1996
  • We developed a part of stroke sensing cylinder for position control of automatic excavator and its measurement system. In this paper, for development of stroke sensing cylinder, we consist of 2-axis control instrument system with Hall sensor. A performance of piston rod with magnetic scales is evaluated by the developed measurement system. Furthermore, the position control for good performance of instrument system is achieved by a sliding mode control which is a new method diminishing the chattering in that control by setting 2-dead band along the swtching line. The unknown parameters for sliding mode control are estimated by the signal compression method.

  • PDF

Development of the Lossless Biological Signal Compression Program for High-quality Multimedia based Real-Time Emergency Telemedicine Service (고품질 멀티미디어 기반 응급 원격 진료서비스를 위한 생체신호 무손실 압축, 복원 프로그램 개발)

  • Lim, Young-Ho;Kim, Jung-Sang;Yoon, Tae-Sung;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2727-2729
    • /
    • 2002
  • In an emergency telemedicine system such as High-quality Multimedia based Real-time Emergency Telemedicine(HMRET) service, it is very important to examine the status of the patient continuously using the multimedia data including the biological signals(ECG, BP, Respiration, $SpO_2$) of the patient. In order to transmit these data real time through the communication means which have the limited transmission capacity. It is also necessary to compress the biological data besides other multimedia data. For the HMRET service, we developed the lossless biological signal compression program in MSVC++ 6.0 using DPCM method and JPEG Huffman table, and tested in an internet environment.

  • PDF

Identification of the Closed Loop Systems using the Signal Compression Method

  • Toshitaka UMEMOTO;I, Tomoharu-Do;Shoichiro FUJISAWA;Takeo YOSHIDA
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.318-322
    • /
    • 1998
  • An Electro Magnetic Suspension System, which has two floating masses connected with springs and dampers, can not keep its equilibrium when it is solved as an ordinary quartic mathematical model. So, a two dimensional con-troller, designed with quadratic mathematical model assuming the two mass model to be a rigid body, was used. As the result, the system floated stably. Therefore, we measured the transfer performances of this closed loop system contained this controller using the compression signal method proposed by N.Aoshima and identified the parameters of this system. Finally, we compared these parameters with the computing results of quartic mathematical model.

  • PDF

A 10-Lead Long Duration Ambulatory ECG Design -Minimizing power consumption-

  • Kim, Eung-Kyeu;Lee, Hoon-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • The ECG(Electrocardiograph) ambulatory test as called Holter is performed usually to diagnose several heart diseases causing different arrhythmias. This paper exposes the insights of the design of a 10-lead ambulatory ECG recorder. Reducing the size and minimizing the power consumption of the ECG recorder are crucial to allow long recording time without causing discomfort to the patient. This paper proposes lower hardware design and differential compression algorithm to extend the maximum 72 hours recording time in consideration of smaller and light-weighted recorder size. The performance results by newly introduced compression algorithm are shown and discussed.

Non-Iterative Threshold based Recovery Algorithm (NITRA) for Compressively Sensed Images and Videos

  • Poovathy, J. Florence Gnana;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4160-4176
    • /
    • 2015
  • Data compression like image and video compression has come a long way since the introduction of Compressive Sensing (CS) which compresses sparse signals such as images, videos etc. to very few samples i.e. M < N measurements. At the receiver end, a robust and efficient recovery algorithm estimates the original image or video. Many prominent algorithms solve least squares problem (LSP) iteratively in order to reconstruct the signal hence consuming more processing time. In this paper non-iterative threshold based recovery algorithm (NITRA) is proposed for the recovery of images and videos without solving LSP, claiming reduced complexity and better reconstruction quality. The elapsed time for images and videos using NITRA is in ㎲ range which is 100 times less than other existing algorithms. The peak signal to noise ratio (PSNR) is above 30 dB, structural similarity (SSIM) and structural content (SC) are of 99%.

A Strategy for Integrated Target Recognition and High Quality Compression (목표물 탐지를 고려한 통합 이미지 압축에 관한 연구)

  • 남진우
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.257-260
    • /
    • 2000
  • In modern battlefield situation, radar and infrared sensors may be located on aircraft having limited computational resources available for real-time computer processing. Hence sensor images are transmitted typically to central stations for processing and automatic target recognition/detection. Owing to the limited bandwidth channels that are typically available between the aircraft and processing stations, images are compressed prior to transmission to facilitate rapid transfer. In this paper we examine the problem of compressing sensor data for transmission, given that target recognition is the end goal. Performance result shows that the front-end target recognition system achieves a relatively high level of performance as well as a high compression ratio.

  • PDF

JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

  • Kahu, Samruddhi Y.;Bhurchandi, Kishor M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5056-5078
    • /
    • 2018
  • In this work we propose a compression technique that makes use of linear and perceptually uniform CIE $La^*b^*$ color space in the JPEG image compression framework to improve its performance at lower bitrates. To generate quantization matrices suitable for the linear and perceptually uniform CIE $La^*b^*$ color space, a novel linear Contrast Sensitivity Function (CSF) is used. The compression performance in terms of Compression Ratio (CR) and Peak Signal to Noise Ratio (PSNR), is further improved by utilizing image dependent, variable and non-uniform image sub-blocks generated using a proposed histogram-based merging technique. Experimental results indicate that the proposed linear CSF based quantization technique yields, on an average, 8% increase in CR for the same reconstructed image quality in terms of PSNR as compared to the conventional YCbCr color space. The proposed scheme also outperforms JPEG in terms of CR by an average of 45.01% for the same reconstructed image quality.

A Consistent Quality Bit Rate Control for the Line-Based Compression

  • Ham, Jung-Sik;Kim, Ho-Young;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.310-318
    • /
    • 2016
  • Emerging technologies such as the Internet of Things (IoT) and the Advanced Driver Assistant System (ADAS) often have image transmission functions with tough constraints, like low power and/or low delay, which require that they adopt line-based, low memory compression methods instead of existing frame-based image compression standards. Bit rate control in the conventional frame-based compression systems requires a lot of hardware resources when the scope of handled data falls at the frame level. On the other hand, attempts to reduce the heavy hardware resource requirement by focusing on line-level processing yield uneven image quality through the frame. In this paper, we propose a bit rate control that maintains consistency in image quality through the frame and improves the legibility of text regions. To find the line characteristics, the proposed bit rate control tests each line for ease of compression and the existence of text. Experiments on the proposed bit rate control show peak signal-to-noise ratios (PSNRs) similar to those of conventional bit rate controls, but with the use of significantly fewer hardware resources.

The Effects of Image Dehazing Methods Using Dehazing Contrast-Enhancement Filters on Image Compression

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Li, Weizhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3245-3271
    • /
    • 2016
  • To obtain well-dehazed images at the receiver while sustaining low bit rates in the transmission pipeline, this paper investigates the effects of image dehazing methods using dehazing contrast-enhancement filters on image compression for surveillance systems. At first, this paper proposes a novel image dehazing method by using a new method of calculating the transmission function—namely, the direct denoising method. Next, we deduce the dehazing effects of the direct denoising method and image dehazing method based on dark channel prior (DCP) on image compression in terms of ringing artifacts and blocking artifacts. It can be concluded that the direct denoising method performs better than the DCP method for decompressed (reconstructed) images. We also improve the direct denoising method to obtain more desirable dehazed images with higher contrast, using the saliency map as the guidance image to modify the transmission function. Finally, we adjust the parameters of dehazing contrast-enhancement filters to obtain a corresponding composite peak signal-to-noise ratio (CPSNR) and blind image quality assessment (BIQA) of the decompressed images. Experimental results show that different filters have different effects on image compression. Moreover, our proposed dehazing method can strike a balance between image dehazing and image compression.

A Study on the Holter Data Compression Algorithm -Using Piecewise Self-Affine Fractal Model- (Holter Data 압축 알고리즘에 관한 연구 -Piecewise Self-Affine Fractal Model을 이용한-)

  • 전영일;정형만
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • This paper presents a new compression method (or ECG data using iterated contractive transformations. The method represents any range of ECG signal by piecewise self-afrine fractal Interpolation (PSAFI). The piecewise self-afrine rractal model is used where a discrete data set is viewed as being composed of contractive arfine transformation of pieces of itself. This algorithm was evaluated using MIT/BIH arrhythmia database. PSAFI is found to yield a relatively low reconstruction error for a given compression ratio than conventional direct compression methods. The compression ratio achieved was 883.9 bits per second (bps) - an average percent rms difference (AFRD) of 5.39 percent -with the original 12b ECG samples digitized at 400 Hz.

  • PDF