• Title/Summary/Keyword: Side walls

Search Result 299, Processing Time 0.024 seconds

Anti-Seismic Evaluation of Waterproofing Materials for Positive-Side wall and pile wall of Underground Concrete Structures (합벽구간 및 지하구조물 외벽에 사용되는 방수재료 내진 성능실험방법)

  • Oh, Kyu-hwan;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.210-211
    • /
    • 2021
  • This study introduces and demonstrates the application of an experimental regime for anti-seismic performance evaluation of waterproofing materials to used for concrete pile walls. Concrete pile walls are subject to high degree of seismic load, and the occurring stress can affect the waterproofing integrity of the structure, but there is currently no existing methodology or standard for evaluating this property of waterproofing materials. To propose and conduct this evaluation, a new testing apparatus was designed and manufactured intended to be able to test an installed waterproofing material's seismic resistance performance.

  • PDF

Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios (강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성)

  • Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

Essence of thermal convection for physical vapor transport of mercurous chloride in regions of high vapor pressures

  • Kim, Geug-Tae;Lee, Kyong-Hwan;Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.231-237
    • /
    • 2007
  • For an aspect ratio (transport length-to-width) of 5, Pr=3.34, Le=0.078, Pe=4.16, Cv=1.01, $P_B=50$ Torr, only thermally buoyancy-driven convection ($Gr=4.83{\times}10^5$) is considered in this study in spite of the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B which would cause thermally and/or solutally buoyancy-driven convection. The crystal growth rate and the maximum velocity vector magnitude are decreased exponentially for $3{\le}Ar{\le}5$, for (1) adiabatic walls and (2) the linear temperature profile, with a fixed source temperature. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. The rate for the linear temperature profiles walls is slightly greater than for the adiabatic walls far varied temperature differences and aspect ratios. With the imposed thermal profile, a fixed source region, both the rate and the maximum velocity vector magnitude increase linearly with increasing the temperature difference for $10{\le}{\Delta}T{\le}50K$.

Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure

  • Karantoni, Fillitsa;Tsionis, Georgios;Lyrantzaki, Foteini;Fardis, Michael N.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.689-713
    • /
    • 2014
  • The seismic vulnerability of stone masonry buildings is studied on the basis of their fragility curves. In order to account for out-of-plane failure modes, normally disregarded in past studies, linear static Finite Element analysis in 3D of prototype regular buildings is performed using a nonlinear biaxial failure criterion for masonry. More than 1100 analyses are carried out, so as to cover the practical range of the most important parameters, namely the number of storeys, percentage of side length in exterior walls taken up by openings, wall thickness, plan dimensions and number of interior walls, type of floor and pier height-to-length ratio. Results are presented in the form of damage and fragility curves. The fragility curves correspond well to the damage observed in masonry buildings after strong earthquakes and are in good agreement with other fragility curves in the literature. They confirm what is already known, namely that buildings with stiff floors or higher percentage of load-bearing walls are less vulnerable, and that large openings, taller storeys, larger number of storeys, higher wall slenderness and higher ratio of clear height to horizontal length of walls increase the vulnerability, but show also by how much.

Shear Load Performance Test in Accordance with Sheathing Materials of Shear Wall (전단벽의 덮개재료에 따른 전단저항 성능)

  • Jang, Sang-Sik;Shin, Il-Joong;Kim, Yun-Hui
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.271-276
    • /
    • 2010
  • In this study, the light-frame wood shear walls according to the sheathing materials was carried out to investigate the shear load performance. Most common sheathing materials are the structural OSB and gypsum board used to consist wall of wood-frame house. Seven different type of specimens are composed of several sheathing materials and shear test was taken to evaluate shear performance by KS F 2154. As a result, shear walls(G12.5/G12.5 and G12.5/OSB) show that maximum shear strength and shear rigidity modulus are 7316N/mm${\cdot}$118.25 N/mm and 11129 N/mm${\cdot}$184.66 N/mm respectively. The shear wall using gypsum board 15mm improve maximum shear strength and shear rigidity modulus about 30%. The shear wall using 15mm gypsum board showed intermediate value in one side specimens. Different types of shear walls could be compared with the shear load performance. Also, nailed joint failure aspects are different to sheathing material and installing method.

Effect of Rib Arrangement on Heat Transfer in the Divergent Channel (확대 채널에서 리브 배열이 열전달에 미치는 효과)

  • Lee, Myung-Sung;Lee, Gyeong-Ju;Kim, Sang-Moon;Min, Se-Chan;Bae, Jae-Moon;Hwang, Jun-Su;Park, Cheol-O;Kim, Dong-Chan;Jung, Jung-Hyeon;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.35-40
    • /
    • 2017
  • The effects of the different rib geometries such as V-shaped continuous (case A), parallel broken (case B), and V-shaped broken (case C) ribs on the heat transfer and pressure drops in a divergent channel with $45^{\circ}$ inclined ribs on one wall or two walls are checked out. The top and bottom walls are adiabatic; two side walls are uniformly heated in the divergent rectangular channel. The tested Reynolds numbers are ranged from 22,000 to 75,000. The channel with two opposite walls inclined only has the length of test section of 1 m and the channel divergence ratio of $D_{ho}/D_{hi}=1.49$, corresponding to $1.43^{\circ}$ inclined walls. The results show in the identical pumping power that the V-shaped continuous rib (case A) with two ribbed walls is the greatest, but the parallel broken rib (case B) with one ribbed wall is the worst in the thermal performance.

Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing (RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가)

  • Eom, Tae Sung;Hur, Moo Won;Lee, Sang Hyun;Lee, Bum Sik;Chun, Young Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

A Study on the Flow Characteristics around Intakes within a Sump by PIV (PIV에 의한 흡입수조내 흡입관 주위의 유동특성에 관한 연구)

  • Choi, J. W.;Kim, J. H.;Kim, K. Y.;Kim, Y. T.;Lee, Y. H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.33-39
    • /
    • 2002
  • The head-capacity corves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and with no stray currents. Hence, flow into the pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. However, various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall, and back-wall due to different clearances from back-wall to vortical intake pipe. Moreover, the locations and patterns of the various types of vortices that were found in the examinations are discussed.

Optimized Magnetic Shielding for the MagLev Vechicles (자기부상열차의 최적 자기 차폐)

  • 윤현보;박찬일;박희창;손영수;임계재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.17-25
    • /
    • 1991
  • Magnetic leakage flux which is generated from the levitation magnets, linear induction motors, and guide magnets of a MagLev(Magnetic Levitation) system is directly related to inter - system EMI, intra - system EMI, and biological effects. In this paper, the magnetic leakage flux from MagLev vechicles designed by Korea Resarch Institute of Ships & Ocean Engineering was calculated considering the various parameters which influence ma- gnetic field intensity around the MagLev system. Based on the calculated field intensity, the thickness of shielding material and shielding position for MagLev floor and side walls are calculated, taking into account the shielding effectiveness of a shield with minimum weight. For the nonuniform shielding method derived from the above procedure, the weight of a shield con- sisting of floor and side walls shielding can be reduced to more 50% than uniform shielding method.

  • PDF

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.