• Title/Summary/Keyword: Side Lobe Level

Search Result 112, Processing Time 0.021 seconds

Design of an Optimal Planar Array Structure with Uniform Spacing for Side-Lobe Reduction

  • Bae, Ji-Hoon;Seong, Nak-Seon;Pyo, Cheol-Sig;Park, Jae-Ick;Chae, Jong-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • In this paper, we design an optimal planar array geometry for maximum side-lobe reduction. The concept of thinned array is applied to obtain an optimal two dimensional(2-D) planar array structure. First, a 2-D rectangular array with uniform spacing is used as an initial planar array structure. Next, we modify the initial planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraint, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the optimized planar array structure can achieve low side-lobe level without optimizing the excitations of the array antennas.

A Study on an Anti-ghost Television Receiving Antenna (반 고우스트 텔레비젼 수신 안테나 연구)

  • 기우황;육재임
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.2
    • /
    • pp.14-22
    • /
    • 1976
  • This research was started to develop a VHF television antenna which secures good pictures in spite of the disturbance from tile rear side. In a year of research, an antenna which front to banck ratio is gyrator than 30dB and whose side lobe level is smaller than -30dB alas been developed. This new antenna was designed log-periodically for the sake of wide frequency bandwidth which is necessary to cover all tile high channel. And it was found having characteristics of anti-interference against the disturbance wave from tole behind, and anti-ghosts from the reflected waves. Furthermore, the gain of this new antenna is reasonablly high, because of its low side lobe level. After all, the developed antenna is silpposcd to increace the service area considervably and to improve the TV receiving certainly.

  • PDF

STUDY ON THE OPTIMAL PLANAR ARRAY STRUCTURE WITH TRIANGULAR LATTICE FOR SIDE-LOBE REDUCTION (삼각 격자구조를 갖는 평면배열 안테나의 부엽 레벨 감소를 위한 최적 평면배열 형상에 관한 연구)

  • 배지훈;성낙선;이태윤;김종면;표철식
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.250-254
    • /
    • 2002
  • In this paper, we design an optimized planar array structure with triangular lattice for side-lobe reduction using a genetic algorithm. A constraint optimization is implemented by optimally removing some outer array elements far from the array center. It is shown that only the proper array shape without optimizing the magnitudes and phases of each array antenna can give low side-lobe level with a slight main beam broadening.

  • PDF

Design of Scannable Non-uniform Planar Array Structure for Maximum Side-Lobe Reduction

  • Bae, Ji-Hoon;Kim, Kyung-Tae;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.53-56
    • /
    • 2004
  • In this letter, we propose a novel design scheme for an optimal non-uniform planar array geometry in view of maximum side-lobe reduction. This is implemented by a thinned array using a genetic algorithm. We show that the proposed method can maintain a low side-lobe level without pattern distortion during beam steering.

  • PDF

Thinning of 2D and 3D Fractal Antenna Arrays with Bounded and Unbounded Fractal Distribution Functions for Celestial Communications

  • Ponnapalli, Venkata Aditya Sankar;Jayasree, Pappu Venkata Yasoda
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1135-1144
    • /
    • 2016
  • Fractal antenna arrays are geometry-based thinned arrays having multiband applications. The major challenge of these arrays is their large number of elements at higher expansion factors. This article presents the thinning of fractal antenna arrays while maintaining an appropriate balance between the side lobe level and beam width by using various quantized fractal distribution functions. A 2D square fractal antenna array and 3DSierpinski gasket antenna array are considered in this article to validate the proposed distribution functions. Nearly one third of the antenna elements are thinned in each successive iteration except in the case of a one-count distribution function. The proposed technique can simplify practical implementation and exhibits better performance for various parameters such as the side lobe level, side lobe angle, and half power beam width than fully populated fractal antenna arrays.

Increase of Side-lobe Level Difference of Spherical Microphone Array by Implementing MEMS Sensor

  • Lee, Jae-Hyung;Choi, Si-Hong;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.816-820
    • /
    • 2011
  • A method for increasing the difference of side-lobe level in spherical microphone array is presented. In array signal processing, it is known that narrow interval between sensors can increase the difference between main lobe and side-lobe of array response which eventually increase the source recognition capability. Recent commercial array being used, however, have shown certain limitation in using the number of sensors due to its costs and geometrical size of array. To overcome this problem, we have adapted MEMS sensors into spherical microphone array. To check out the improvement, two different types of spherical microphone array were designed. One array is composed with 32 regular instrument microphones and the other one is 85 MEMS sensors. Simulation and experiments were conducted on a sinusoidal noise source with two arrays. The time history data were analyzed with spherical harmonic decomposition and beamforming technique. 85 MEMS sensors array showed the improved side-lobe level suppression by more than 4 dB above the frequency content of 2 kHz compared to 32-sensor array.

  • PDF

Design of an Aperture-Coupled Dual Beam Microstrip Array Antenna (개구면 결합 급전 방식의 이중 빔 마이크로스트립 배열 안테나의 설계)

  • 이영주;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.738-746
    • /
    • 1999
  • In this paper, a microstrip $18\times2$ dual beam array antenna is designed at 10 GHz. The radiating element is an aperture-coupled patch, and it is analyzed by the transmission line model. The feed is a tapered parallel-series type to reduce the side lobe level. To obtain dual beam at $\pm45^{\circ}$, The difference in phase excitation between the elements is $180^{\circ}$. In conclusion, the side lobe level is 25 dB, and the beam width $8^{\circ}$with two main lobes at $\pm44.5^{\circ}$.

  • PDF

A 20-way Stripline Power Divider for an S band Linear Array Antenna with Low Loss and Low Side Lobe Level (S 대역 선형 배열 안테나 급전회로를 위한 저손실, 저부엽 20-출력 스트립라인 전력분배기)

  • Kwon, Tae-Min;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.128-134
    • /
    • 2010
  • In this paper, a high-power 20-way stripline power divider with low insertion loss and low side lobe level is successfully designed, fabricated and measured as a feed network for an S-band linear array antenna having Dolph-Chebyshev current distribution which has a narrow beam width and very low side lobe level (SLL). The 20-way stripline power divider consists of an 8-way power divider, three 4-way power dividers and three ring hybrids. It utilizes a T-junction structure as a basic element for power dividing. Notches and modified input/output N-to-stripline transitions are used for improving insertion loss and return loss. The fabricated power divider shows insertion loss less than 0.3 ㏈ and rms phase mismatch less than 8o in the full bandwidth. A final 40-way power divider is synthesized by combining symmetrically two 20-way power dividers and is expected to have SLL over 40 dB, based on the measured results of the 20-way power divider.

Comparative Study of Optimization Algorithms for Designing Optimal Aperiodic Optical Phased Arrays for Minimal Side-lobe Levels (비주기적 광위상배열에서 Side-lobe Level이 최소화된 구조 설계를 위한 최적화 알고리즘의 비교 연구)

  • Lee, Bohae;Ryu, Han-Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • We have investigated the optimal design of an aperiodic optical phased array (OPA) for use in light detection and ranging applications. Three optimization algorithms - particle-swarm optimization (PSO), a genetic algorithm (GA), and a pattern-search algorithm (PSA) - were employed to obtain the optimal arrangement of optical antennas comprising an OPA. The optimization was performed to obtain the minimal side-lobe level (SLL) of an aperiodic OPA at each steering angle, using the three optimization algorithms. It was found that PSO and GA exhibited similar results for the SLL of the optimized OPA, while the SLL obtained by PSA showed somewhat different features from those obtained by PSO and GA. For an OPA optimized at a steering angle <45°, the SLL value averaged over all steering angles increased as the angle of optimization decreased. However, when the angle of optimization was larger than 45°, low average SLL values of <13 dB were obtained for all three optimization algorithms. This implies that an OPA with high signal quality can be obtained when the arrangement of the optical antennas is optimized at a large steering angle.

Side Lobe Level Improvement Using a 1:2:2:1 Non-Uniformly Excited Sub-Array (1:2:2:1 비균등 부배열을 이용한 부엽 레벨 개선)

  • Jung, Jinwoo;Kim, Jaesin;Han, Duk-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • In this paper, we propose a new array antenna scheme which has an improved side lobe level (SLL) as well as a simplified feeding network and a high gain. The proposed array scheme is based on a non-uniformly excited sub-array. For analysis, we use an array factor of sub-array antenna. In the simulation results, the simulated SLL and gain provide more than 18.43 dB and 26.63 dBi, respectively. For the verification of the proposed design scheme, the prototype antenna with $16{\times}8$ radiating elements was designed by the proposed array scheme. The measured SLL and gain are more than 19.85 dB and 25.53 dBi, respectively. This measurement result indicates that the proposed array scheme is reasonable.