• Title/Summary/Keyword: Side Channel Attacks

Search Result 125, Processing Time 0.025 seconds

Random Point Blinding Methods for Koblitz Curve Cryptosystem

  • Baek, Yoo-Jin
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.362-369
    • /
    • 2010
  • While the elliptic curve cryptosystem (ECC) is getting more popular in securing numerous systems, implementations without consideration for side-channel attacks are susceptible to critical information leakage. This paper proposes new power attack countermeasures for ECC over Koblitz curves. Based on some special properties of Koblitz curves, the proposed methods randomize the involved elliptic curve points in a highly regular manner so the resulting scalar multiplication algorithms can defeat the simple power analysis attack and the differential power analysis attack simultaneously. Compared with the previous countermeasures, the new methods are also noticeable in terms of computational cost.

PARTIAL KEY EXPOSURE ATTACKS ON RSA AND ITS VARIANT BY GUESSING A FEW BITS OF ONE OF THE PRIME FACTORS

  • Sarkar, Santanu;Maitra, Subhamoy
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.721-741
    • /
    • 2009
  • Consider RSA with N = pq, q < p < 2q, public encryption exponent e and private decryption exponent d. We first study cryptanalysis of RSA when certain amount of the Most Significant Bits (MSBs) or Least Significant Bits (LSBs) of d is known. The basic lattice based technique is similar to that of Ernst et al. in Eurocrypt 2005. However, our idea of guessing a few MSBs of the secret prime p substantially reduces the requirement of MSBs or LSBs of d for the key exposure attack. Further, we consider the RSA variant proposed by Sun and Yang in PKC 2005 and show that the partial key exposure attack works significantly on this variant.

Key Recovery Attacks on Zorro Using Related-Key Differential Characteristics, and Collision Attacks on PGV-Zorro (Zorro의 연관키 차분특성을 이용한 키 복구 공격 및 PGV-Zorro의 충돌쌍 공격)

  • Kim, Giyoon;Park, Eunhu;Lee, Jonghyeok;Jang, Sungwoo;Kim, Jihun;Kim, Hangi;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1059-1070
    • /
    • 2018
  • The block cipher Zorro is designed to reduce the implementation cost for side-channel countermeasure. It has a structure similar to AES, but the number of S-Boxes used is small. However, since the master key is used as the round key, it can be vulnerable to related key attacks. In this paper, we show key recovery attacks on Zorro using related-key differential characteristics. In addition, the related key differential characteristics are fatal when Zorro is used as the base block cipher of the hash function. In this paper, we describe how these characteristics can be linked to collision attacks in the PGV models.

A New Simple Power Analysis Attack on the m-ary Exponentiation Implementation (m-ary 멱승 연산에 대한 새로운 단순 전력 분석 공격)

  • Ahn, Sung-Jun;Choi, Doo-Ho;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.261-269
    • /
    • 2014
  • There are many researches on fast exponentiation algorithm which is used to implement a public key cryptosystem such as RSA. On the other hand, the malicious attacker has tried various side-channel attacks to extract the secret key. In these attacks, an attacker uses the power consumption or electromagnetic radiation of cryptographic devices which is measured during computation of exponentiation algorithm. In this paper, we propose a novel simple power analysis attack on m-ary exponentiation implementation. The core idea of our attack on m-ary exponentiation with pre-computation process is that an attacker controls the input message to identify the power consumption patterns which are related with secret key. Furthermore, we implement the m-ary exponentiation on evaluation board and apply our simple power analysis attack to it. As a result, we verify that the secret key can be revealed in experimental environment.

Real-Time Detection on FLUSH+RELOAD Attack Using Performance Counter Monitor (Performance Counter Monitor를 이용한 FLUSH+RELOAD 공격 실시간 탐지 기법)

  • Cho, Jonghyeon;Kim, Taehyun;Shin, Youngjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.6
    • /
    • pp.151-158
    • /
    • 2019
  • FLUSH+RELOAD attack exposes the most serious security threat among cache side channel attacks due to its high resolution and low noise. This attack is exploited by a variety of malicious programs that attempt to leak sensitive information. In order to prevent such information leakage, it is necessary to detect FLUSH+RELOAD attack in real time. In this paper, we propose a novel run-time detection technique for FLUSH+RELOAD attack by utilizing PCM (Performance Counter Monitor) of processors. For this, we conducted four kinds of experiments to observe the variation of each counter value of PCM during the execution of the attack. As a result, we found that it is possible to detect the attack by exploiting three kinds of important factors. Then, we constructed a detection algorithm based on the experimental results. Our algorithm utilizes machine learning techniques including a logistic regression and ANN(Artificial Neural Network) to learn from different execution environments. Evaluation shows that the algorithm successfully detects all kinds of attacks with relatively low false rate.

A High-speed Masking Method to protect ARIA against Side Channel Analysis (부채널 분석에 안전한 고속 ARIA 마스킹 기법)

  • Kim, Hee-Seok;Kim, Tae-Hyun;Ryoo, Jeong-Choon;Han, Dong-Guk;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2008
  • In the recent years, power attacks were widely investigated, and so various countermeasures have been proposed. In the case of block ciphers, masking methods that blind the intermediate results in the algorithm computations(encryption, decryption, and key-schedule) are well-known. Applications of masking methods are able to vary in different block ciphers, therefore suitable masking methods about each ciphers have been researched. Existed methods of ARIA have many revisions of mask value. And because existed masking methods pay no regard for key schedule, secret information can be exposed. In the case of ARIA, this problem is more serious than different block ciphers. Therefore we proposes an efficient masking scheme of ARIA including the key-schedule. Our method reduces time-complexity of ARIA encryption, and solve table-size problem of the general ARIA masking scheme from 256*8 byte to 256*6 byte.

Power Analysis Attacks on the Stream Cipher Rabbit (스트림 암호 Rabbit에 대한 전력분석 공격)

  • Bae, Ki-Seok;Ahn, Man-Ki;Park, Jea-Hoon;Lee, Hoon-Jae;Moon, Sang-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • Design of Sensor nodes in Wireless Sensor Network(WSN) should be considered some properties as electricity consumption, transmission speed, range, etc., and also be needed the protection against various attacks (e.g., eavesdropping, hacking, leakage of customer's secret data, and denial of services). The stream cipher Rabbit, selected for the final eSTREAM portfolio organized by EU ECRYPT and selected as algorithm in part of ISO/IEC 18033-4 Stream Ciphers on ISO Security Standardization recently, is a high speed stream cipher suitable for WSN. Since the stream cipher Rabbit was evaluated the complexity of side-channel analysis attack as 'Medium' in a theoretical approach, thus the method of power analysis attack to the stream cipher Rabbit and the verification of our method by practical experiments were described in this paper. We implemented the stream cipher Rabbit without countermeasures of power analysis attack on IEEE 802.15.4/ZigBee board with 8-bit RISC AVR microprocessor ATmega128L chip, and performed the experiments of power analysis based on difference of means and template using a Hamming weight model.

Improved Differential Fault Analysis on Block Cipher PRESENT-80/128 (PRESENT-80/128에 대한 향상된 차분 오류 공격)

  • Park, Se-Hyun;Jeong, Ki-Tae;Lee, Yu-Seop;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.33-41
    • /
    • 2012
  • A differential fault analysis(DFA) is one of the most important side channel attacks on block ciphers. Most block ciphers, such as DES, AES, ARIA, SEED and so on., have been analysed by this attack. PRESENT is a 64-bit block cipher with 80/128-bit secret keys and has a 31-round SP-network. So far, several DFAs on PRESENT have been proposed. These attacks recovered 80, 128-bit secret keys of PRESENT with 8~64 fault injections. respectively. In this paper, we propose an improved DFA on PRESENT-80/128. Our attack can reduce the complexity of exhaustive search of PRESENT-80(resp. 128) to on average 1.7(resp. $2^{22.3}$) with 2(resp. 3) fault injections, From these results, our attack results are superior to known DFAs on PRESENT.

Security Analysis against RVA-based DPA Countermeasure Applied to $Eta_T$ Pairing Algorithm (RVA 기반의 페어링 부채널 대응법에 대한 안전성 분석)

  • Seo, Seog-Chung;Han, Dong-Guk;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Recently, pairings over elliptic curve have been applied for various ID-based encryption/signature/authentication/key agreement schemes. For efficiency, the $Eta_T$ pairings over GF($P^n$) (P = 2, 3) were invented, however, they are vulnerable to side channel attacks such as DPA because of their symmetric computation structure compared to other pairings such as Tate, Ate pairings. Several countermeasures have been proposed to prevent side channel attacks. Especially, Masaaki Shirase's method is very efficient with regard to computational efficiency, however, it has security flaws. This paper examines closely the security flaws of RVA-based countermeasure on $Eta_T$ Pairing algorithm from the implementation point of view.

Practical Second-Order Correlation Power Analysis on the Message Blinding Method and Its Novel Countermeasure for RSA

  • Kim, Hee-Seok;Kim, Tae-Hyun;Yoon, Joong-Chul;Hong, Seok-Hie
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.102-111
    • /
    • 2010
  • Recently power attacks on RSA cryptosystems have been widely investigated, and various countermeasures have been proposed. One of the most efficient and secure countermeasures is the message blinding method, which includes the RSA derivative of the binary-with-random-initial-point algorithm on elliptical curve cryptosystems. It is known to be secure against first-order differential power analysis (DPA); however, it is susceptible to second-order DPA. Although second-order DPA gives some solutions for defeating message blinding methods, this kind of attack still has the practical difficulty of how to find the points of interest, that is, the exact moments when intermediate values are being manipulated. In this paper, we propose a practical second-order correlation power analysis (SOCPA). Our attack can easily find points of interest in a power trace and find the private key with a small number of power traces. We also propose an efficient countermeasure which is secure against the proposed SOCPA as well as existing power attacks.