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Recently power attacks on RSA cryptosystems have 
been widely investigated, and various countermeasures 
have been proposed. One of the most efficient and secure 
countermeasures is the message blinding method, which 
includes the RSA derivative of the binary-with-random-
initial-point algorithm on elliptical curve cryptosystems. It 
is known to be secure against first-order differential power 
analysis (DPA); however, it is susceptible to second-order 
DPA. Although second-order DPA gives some solutions for 
defeating message blinding methods, this kind of attack 
still has the practical difficulty of how to find the points of 
interest, that is, the exact moments when intermediate 
values are being manipulated. In this paper, we propose a 
practical second-order correlation power analysis 
(SOCPA). Our attack can easily find points of interest in a 
power trace and find the private key with a small number 
of power traces. We also propose an efficient 
countermeasure which is secure against the proposed 
SOCPA as well as existing power attacks. 
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I. Introduction 

RSA is a public key cryptosystem that is widely used in a 
growing number of embedded applications such as smart cards. 
Even though these systems are proven to be secure with 
mathematical tools, they could be vulnerable to physical 
attacks using additional information via side channels. For the 
last few years, increased research has focused on these 
implementation vulnerabilities. These sorts of attacks are 
referred to as side channel attacks (SCAs) and were first 
introduced by Kocher [1]. 

In the categories of SCAs, one actively researched technique 
used on RSA cryptosystems is the power analysis attack, which 
was first published by S. Messerges and others [2]. Power 
analysis attacks on RSA cryptosystems are classified into two 
kinds of attacks, simple power analysis (SPA) and differential 
power analysis (DPA). While an SPA can expose secret 
information by observing the power consumption of a single 
execution of a cryptographic algorithm, a DPA is more 
sophisticated and powerful. It finds secret information by a 
statistical analysis of many executions of the same algorithm 
with different inputs without physical decapsulation of the 
target device. In a simple example of SPA, a secret key can be 
easily exposed in the binary exponentiation algorithm by 
distinction between the squaring signal and the multiplication 
signal. However, DPA is more powerful and complicated than 
SPA because it can lead to the recovery of the secret key even 
in extraordinary cases: first when it is impossible to distinguish 
between the squaring signal and the multiplication signal, that 
is, when a countermeasure based on atomicity [3] is used, and 
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second, when an exponentiation is computed by a 
predetermined fixed path, such as Coron’s dummy method [4] 
and the Montgomery ladder (ML) method [5]. 

Messerges and others introduced three DPA attacks on the 
binary modular exponentiation algorithm: single-exponent 
multiple-data (SEMD), multiple-exponent single-data (MESD), 
and zero-exponent multiple-data (ZEMD) [2]. Amiel and others 
advanced power analysis techniques using correlation on the 
Chinese remainder theorem (CRT), RSA, and a non-CRT RSA 
[6]. Both DPA and correlation power analysis (CPA) attacks use 
some relation between power consumption and intermediate 
values appearing according to part of the secret key. The reason 
why power analysis attacks can recover the secret key is that the 
power consumption signal from a CMOS cryptographic device 
is strongly related to the internal state of the device. 

DPA attacks can be precluded by eliminating or hiding the 
relationship between the power consumption and the internal 
state. There are two popular methods to achieve this goal: the 
exponent blinding method and the message blinding method. 
In the exponent blinding method, the exponent is randomized 
or split. The exponent randomization (ER) randomly changes 
the exponent by adding the order φ(n), in which xd mod n is 
computed by xd+rφ(n) mod n [4]. The disadvantage of ER is that 
it requires the additional system parameter φ(n) and additional 
computation overhead for random number r. What is worse, its 
security is also controversial [7]. The exponent splitting (ES) 
method [8] computes xrxd-r mod n, and the improved exponent  

splitting (IES) method [9] computes / ( mod )( ) d rr d rx x⎢ ⎥⎣ ⎦ mod n 
instead of xd mod n, where u⎢ ⎥⎣ ⎦  and r are the largest integer 
less than or equal to u and a random number, respectively. ES 
has the disadvantages of a doubled computation time 
compared to the case without countermeasures as well as the 
storage for r and d – r. The disadvantage of IES is that it 
requires the inverse of a random number, which takes large 
computational time and memory.  

The second alternative for preventing power analysis attacks 
is the message blinding method. In elliptic curve cryptography, 
the binary-with-random-initial-point (BRIP) is one of the most 
efficient and popular message blinding methods to preclude 
SPA, DPA, and refined power analysis (RPA) because the 
inversion operation is almost free [10], [11]. However, we 
cannot apply BRIP to RSA directly as this would require an 
expensive inversion operation. To reduce the cost of the 
inversion, Amiel and Feix proposed a modified BRIP 
algorithm for RSA using Montgomery multiplication [12]. 
This algorithm must be designed not to expose the random 
number by SPA when generating the random number and its 
inverse. This vulnerability was also well explained in [12]. 

Although the BRIP algorithm is designed to be secure 

against SPA and DPA, this algorithm may still be vulnerable to 
a second-order DPA (SODPA), such as the Okeya-Sakurai 
style attack, theoretically proposed in elliptic curve 
cryptosystems (ECCs) [13]. The weakness is that one operand 
in the multiplication is fixed and the same pre-computed value 
is used when the same bits of the secret key are manipulated. 
This kind of problem can be found in various countermeasures 
using the message blinding method to thwart first-order DPAs, 
which utilize left-to-right type exponentiation based on 
window techniques. Even if SODPAs are proven to be 
effective in theory, a practical issue remains: how to find points 
of interest corresponding to the time to use or load fixed values. 
The practicality of SODPAs is determined by how easy it is to 
precisely find these points.  

In this paper, we propose a new second-order correlation 
power analysis (SOCPA) which uses correlation coefficients 
between power traces to be able to analyze modified BRIP 
algorithms. This new attack can find points of interest with ease 
and does not require a profiling stage; therefore, it is practical. 
Besides, this attack requires fewer power traces than Okeya-
Sakurai style SODPA. In addition, even when additional 
countermeasures such as random time delay and random clocks 
are added to the message blinding methods, our algorithm can 
find the secret key. Experimental results support these assertions. 
Our attack can be extended to various countermeasures such as 
the binary method and the ML method using the message 
blinding method. Because this attack does not require any 
plaintext or ciphertext, CRT RSA is also vulnerable. 

To resist the proposed SOCPA as well as the previous power 
analysis attacks, we propose a new countermeasure. This new 
countermeasure uses the message blinding methods rather than 
the exponent blinding method to minimize variation of existing 
systems. Our countermeasure is designed by modifying the 
ML method, but it does not incur much computation overhead. 

The remainder of this paper is organized as follows. In 
section II, we present the theoretical background for 
exponentiation in RSA and for power analysis on a naive 
algorithm and the BRIP algorithms. Our proposed attack and 
experimental results are presented in section III. In section IV, 
we introduce a novel secure countermeasure against most 
power analysis attacks. Finally, we conclude this article in 
section V. 

II. Related Work 

1. Modular Montgomery Multiplication and the RSA 
Exponentiation Algorithm 

Montgomery multiplication is a technique which allows an 
efficient implementation of modular reduction without 
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explicitly carrying out the classical modular reduction step. Let 
m be a positive integer, and let R be an integer such that      
R (=wt) > m, gcd(m, R) = 1, where w is word size, t is the 
smallest integer such that wt > m, and gcd denotes the greatest 
common divisor. To describe the Montgomery multiplication 
algorithm, we first define the m-residue of an integer A < m as 
‘A’ = AR mod m. Here, ‘A’ is the Montgomery representation 
of A. Given two m-residues ‘A’ and ‘B’, the Montgomery 
multiplication is defined as the m-residue ‘z’ = Mont(‘A’, ‘B’) 
= ‘A’‘B’R-1 mod m, where z = AB mod m. Algorithm 1 describes 
Montgomery multiplication. 

  
Algorithm 1. Montgomery multiplication 
Input: A (=at-1at-2…a0)w, B (=bt-1bt-2…b0)w, m (=mt-1mt-2 …m0)w, 
     R=wt and m' = –m0

-1 mod w. 
Output: ABR-1 mod m. 

1. S = 0 (Notation: S (=stst-1…s0)w) 
2. For i = 0 to t – 1 do 

2.1.  ui = (s0 + bia0)m’ mod w. 
2.2.  S = (S + biA + uim)/w. 

3. If S ≥ m then S = S − m. 
4. Return S. 

 
Since conversion from an ordinary residue to an m-residue, 

computation of m', and conversion back to an ordinary residue 
are time-consuming, it is not a good idea to use the 
Montgomery multiplication algorithm when only a single 
modular multiplication is performed. It is more suitable when 
several modular multiplications with respect to the same 
modulus are needed. Such is the case when one needs to 
compute a modular exponentiation in RSA. Algorithm 2 
represents an RSA exponentiation algorithm using 
Montgomery multiplication. 

 
Algorithm 2. RSA exponentiation algorithm using Montgomery 
multiplication 
Input: X, m, and d = (dn-1dn-2…d1d0)2 where n is the size of modulus m. 
Output: Xd mod m. 

1. S0 = S1 = Mont(X, R2). 
2. For i = n – 2 down to 0 do 

2.1.  S0=Mont(S0, S0). 
2.2.  If di = 1, then S0=Mont(S0, S1). 

3. S0=Mont(S0, 1). 
4. Return S0. 

 
2. BRIP Countermeasure for RSA 

The message blinding method defends against first-order DPA 
attacks because intermediate values expected by an attacker are 
blinded by a random number at each execution. The BRIP 
algorithm is the most popular message blinding method. It was 

originally proposed for ECC because an inversion operation is 
almost free in this setting. An RSA derivative of the BRIP 
algorithm computes (XdU(11’1’…1’)2 mod m)U1’ mod m, where 1’  
denotes –1 and U is a random number newly generated for 
each execution of the exponentiation Xd. The computation of 
XdU11’1’…1’ mod m is accomplished by the simultaneous 
exponentiation algorithm. The only problem of the BRIP 
algorithm for RSA is how to compute the inverse U1’ of the 
random number U. Amiel and Feix with Ciet and Feix’s idea 
solved this problem by using Montgomery multiplication 
Mont(1,1)=R-1 mod m [12]. Therefore, when U is Rv with a 
relatively short exponent v, U1’ can be easily computed by 
(Mont(1,1))v. To avoid analysis methods like the doubling 
attack [14] and the collision attack [12], we recommend using 
at least a 48-bit random value v. These analyses succeed when 
an attacker can have one pair of traces which are blinded by 
same masking value. When a 48-bit random value is used, 14 
million traces are required in order to find collisions that have a 
probability of 0.5 according to fact 2.27 of [15]. However, it is 
practically impossible for any attacker to collect this many 
power traces. Algorithm 3 shows an RSA version of the BRIP 
countermeasure using this idea. 
 
Algorithm 3. BRIP algorithm for RSA 
Input: X, m, and d = (dn-1dn-2…d1d0)2 where n is the size of modulus m. 
Output: Xd mod m. 

1. If X = 1 then return 1. Else if X = –1 then return 1 – 2d0. 
2. Generate a random value v. 
3. Compute U=Rv mod m and U0=(Mont(1,1))v=R-v mod m using 

SPA resistant exponentiation. 
4. Compute U=Mont(U, R2). 
5. Compute U0=Mont(U0, R2) and U1=Mont(Mont(X, R2), U0). 
6. For i=n –1 down to 0 do. 

6.1.  U=Mont(U, U). 
6.2.  U=Mont(U, Udi). 

7. U=Mont(U, U0) 
8. Return Mont(U, 1). 

3. Second-Order DPA on BRIP Countermeasure 

SODPA is well-known to the analysis method on the DPA 
countermeasure. The method of [16] can threaten the DPA 
countermeasure of the block cipher using the additive masking 
[17]; however, it is doubtful that the message blinding method 
corresponding multiplicative masking has a weakness against 
the analysis of [16] because this analysis uses a characteristic to 
be only processed in the additive masking. The typical SODPA 
against the message blinding method is the Okeya-Sakurai 
style SODPA. The Okeya-Sakurai style SODPA on the BRIP 
countermeasure is performed as follows. In step 6.2 of 
algorithm 3, U=Mont(U, Udi) is calculated with fixed 
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precomputed values of U0 and U1. The power consumptions 
when Udi is being loaded or used are similar if dj =di, where 
j≠i. Therefore, an attacker can find the secret key because the 
difference of power consumptions corresponding to the loading 
or manipulating time of the operand for the same bits di = dj 
(i≠j) is smaller than those for different bits. 

However, the practical difficulty of the Okeya-Sakurai style 
SODPA is how to detect the time when the operand Udi is 
loaded or manipulated. This problem is a fundamental and 
critical issue in SODPA. If this problem is not solved, most 
SODPA attacks are still not practical and realizable. Another 
problem of this attack happens when additional 
countermeasures such as inserting noise, random time delay, 
and random clocks are applied. Most of state-of-the-art smart 
cards additionally use such countermeasures to enhance the 
security of the device. When we try to perform SODPA in 
these devices in practice, it fails to recover the secret key 
because of the effect of noisy signal, misalignment, or 
desynchronization of signals. 

III. Practical Second-Order CPA on the BRIP 
Algorithm 

The SODPA on the BRIP algorithm requires the following 
assumptions: 

i) Assumption of SODPA (AOS): By the profiling stage, an 
attacker must accurately know the time when an operand is 
loaded or manipulated in the process of multiplication 
computation. 

ii) Assumption of weak target device (AOWT): When 
attackers can collect only a limited number of power 
signals, the power signals must not be affected by 
additional countermeasures, such as insertion noise, 
random time delay, or random clocks. 

For the success of the SODPA like the Okeya-Sakurai style 
attack, an attacker must know some information needed in 
analysis. While it may be easy for developers of a target device 
to acquire this information, attackers without any knowledge of 
the device must use a lot of time to carry out various tests, such 
as power fluctuation tests according to input values. This is the 
first step to achieving AOS. In addition, the SODPA must be 
conducted to recover a secret key under AOWT because that is 
executed with the differential power trace only. 

The practical SOCPA on the BRIP algorithm which we 
propose in this paper can also be applied to circumstances that 
do not even satisfy AOS and AOWT. 

1. Attack Scenario 

The BRIP algorithm for RSA is composed of two 

exponentiations according to step 3 and one main exponentiation 
according to step 6 in algorithm 3. The target position of the 
proposed attack is the main exponentiation related to the secret 
key. That is, we find the secret exponent d in non-CRT RSA and 
dp or dq in CRT RSA. Finding dp or dq means that the secret 
primes p or q are exposed by gcd(((rdp)e mod n) – r, n), where r 
is the random number. The scenario of our attack progresses as 
described in the following subsections. 

A. Collecting Power Traces 

At first, an attacker acquires N power traces by carrying out 
the BRIP algorithm for RSA. At this time, we never consider 
plaintext or ciphertext. That is, our attack does not require the 
attacker to know any plaintext or ciphertext. 

B. Preprocessing 

In algorithm 3, one operand of multiplication is decided by a 
processed bit of the secret key. If the bit is 0, U0 is manipulated; 
otherwise, U1 is manipulated in step 6.2. This weakness can be 
applied to most left-to-right-type exponentiation algorithms. 

Since our attack is only concerned about multiplication while 
ignoring squaring, an attacker reconstructs new power traces 
by extracting and concatenating the signals of multiplication 
related to step 6.2 from power traces produced during the main 
exponentiation of algorithm 3. We define the newly 
reconstructed i-th power trace as Ci (1≤i≤N). In addition, we 
define points of Ci=Mi,0||Mi,1||…||Mi,n-1 as Ci=(ci,0…ci,1*L-1) 
||(ci,1*L…ci,2*L-1)||…||(ci,(n-1)*L…ci,n*L-1), where Mi,k (0≤k≤n-1) is 
the multiplication signal corresponding to the (k+1)th action of 
step 6.2 in the i-th power trace, L is the length of power signal 
for multiplication, and n is the bit length of the secret key.  

C. Acquisition of the Second-Order Correlation Traces 

To extract the secret key, we can compute the second-order 
correlation power traces from reconstructed power traces Ci 
(1≤i≤N). The correlation trace CTi (2≤i≤n) implies the 
relation between the multiplication corresponding to the MSB 
of the secret key and the other multiplication corresponding to 
the i-th bit. Algorithm 4 describes steps to acquire correlation 
traces CT2, CT3,…, CTn. 

D. Exposure of the Secret Key 

In algorithm 4, we can instinctively anticipate that correlation 
traces will show high-correlation coefficients for the bits that 
have the same value as the MSB of the secret key. Thus, when 
loading or manipulating an operand of the multiplication, a 
high correlation coefficient will be shown. We refer to these 
times as points of interest. However, it is impossible to 
distinguish points of interest visually in some cases that do not 
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Algorithm 4. Acquisition of the second-order correlation traces 
Input: C1, C2,…, CN where Ci=(ci,0…ci,n*L-1). 
Output: Second-order correlation traces CT2, CT3,…, CTn where 

CTi=(ξi,0, ξi,1 ,…, ξi,L-1). 
1. For j=0 to L – 1 do 

1.1.  Set the set XT as {c1,j, c2,j,…, cN,j}. 
1.2.  For i=2 to n do 

1.2.1.  Set the set YT as {c1,(i-1)*L+j, c2,(i-1)*L+j,…, cN,(i-1)*L+j}. 
1.2.2. Generate ξi,j by computing the correlation coefficient 

of XT and YT. 
2. Return CTi=(ξi,0, ξi,1 ,…, ξi,L-1) (2≤i≤n). 

 
satisfy AOWT. The reason is that the points of interest are 
spread over several consecutive cycles rather than being 
centralized in a specific time. 

To detect the interval of interest if AOWT is not satisfied, we 
use the variance between correlation traces. The basic idea is 
that the correlation values for the interval of interest are divided 
into two groups, even if they cannot be distinguished by direct 
observation. One group is composed of relatively high 
correlation coefficients, and the other group consists of 
relatively low correlation coefficients. However, in intervals 
outside the interval of interest, correlation coefficient values are 
almost the same. That is, the variance value between 
correlation traces has a bigger value in the interval of interest. A 
way to find the points of interest is shown in algorithm 5. 

 
Algorithm 5.  Finding points of interest 
Input: Second-order correlation traces CTk, CTk+1,…, CTn. 
Output: s points of interest. 
1. Compute the variance trace V(CN) of CTk, CTk+1,…, CTn where 

V(CN)=(v0v1…vL-1) and vi is the variance of {ξk,i, ξk+1,i, …, ξn,i}. 
2. Select points of interest corresponding to max s values among 

{v0, v1,…, vL-1}. 
3. Return the points selected in step 2. 

 
After finding the points of interest, the remaining step is 

straightforward. Finally, to find the secret key, we sum up 
correlation coefficients corresponding to visually distinguished 
points or to the points of interest acquired by algorithm 5. 

2. Experimental Results 

A. Experimental Environments 

We carried out experiments on a smartcard having a 
dedicated co-processor equipped with the radix-4 Montgomery 
multiplier. The Montgomery multiplier implemented in our 
target device does not require any reduction operation in step 3 
of algorithm 1. Therefore, the target device with this 
Montgomery multiplier is resistant against attacks such as the 

Schindler-style timing attack algorithm [18].  
In step 6.2 of algorithm 3, Mont(U,Udi) could be designed as 

Mont(Udi,U) by the intention of the designers. To be precise, 
two operands of the Montgomery multiplier carry out different 
functions. In Mont(A,B), the word value bi of the second 
operand B decides the multiple biA of the first operand A. That 
is, at each iteration of algorithm 1, bi of B is scanned and then 
the value of biA is added to the accumulator. This means that 
the result of our second-order CPA can differ according to the 
position of operands in step 6.2 of algorithm 3. Therefore, we 
proceed with the experiment as two cases, namely, 
Mont(U,Udi) and Mont(Udi,U). We also carry out experiments 
by applying a random clock as an additional countermeasure. 

B. Experimental Results for the Fixed Values in the Second 
Operand 

As mentioned in the previous section, the first three steps of 
our attack–collecting power signals, pre-processing, and 
acquisition of the second-order correlation traces–should be 
performed whether AOWT is satisfied or not. However, in the 
final step (exposure of the secret key) if we can discern the 
visible high correlation peaks, then we can directly expose the 
secret key by observing second-order correlation traces. 
Otherwise, we have to execute algorithm 5. 

First, when U=Mont(U, Udi) is equipped with fixed clocks, 
Fig. 1 shows the second-order correlation traces for the most 
significant 16 bits of the secret key, that is, 0x3ABA. 

By considering the correlation trace CT2 of Fig. 1, we find 
that the second MSB of the secret key is the same as the first bit. 
On the other hand, we can know that the third MSB is different 
from the first MSB. Therefore, we can decide the 16 most 
significant bits of the secret key as either 0x3ABA or 0xC545. 
To find the 16 most significant bits, we used 200 power traces, 
and the high correlation peaks could be visually discerned by 
direct observation. To test the minimum number of power 

 

 

Fig. 1. Second-order correlation traces using 200 power traces for 
U=Mont(U, Udi) equipped with fixed clocks. 
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Fig. 2. Second-order correlation traces using 1,000 power traces
for U=Mont(U, Udi) equipped with internal random
clocks. 
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traces required for a successful attack, we only used 20 power 
traces by summing up all the correlation coefficients 
corresponding to each multiplication signal. 

Second, we consider what happens when an internal random 
clock is applied. Figure 2 shows the correlation traces. 
Similarly, we can classify the same bits and the different bits 
compared to the first bit. In the case of inserting a random 
clock during computation of exponentiation, we used 1,000 
power traces to find the entire 1,024 bit key. 

If a random clock is used, the minimum number of traces 
needed for recovering the secret key was only 70 when we sum 
up all the correlation coefficients corresponding to each 
multiplication signal. These results mean that our attack is very 
practical and can find the secret key with only a few power 
traces. 

C. Experimental Results for the Fixed Values in the First 
Operand 

Considering the computation of U=Mont(Udi, U) equipped 
with fixed clocks, the second-order correlation traces for the 16 
most significant bits of the secret key are shown in Fig. 3. 

In Fig. 3, only CT2 has relatively high correlation coefficients, 
but the others (from CT3 to CT16) have low correlation 
coefficients. This means that the first MSB of the secret key is 
0, and the second MSB is 1. In algorithm 3, the first action of 
step 6.2 carries out the computation of Rv+1=Mont(U0, R2v+1) 
when the first MSB is 0. On the other hand, the second action 
carries out the computation of XRv+1=Mont(U1, R2v+1) when the 
second MSB is 1. Based on these facts, CT2 has high 
correlation coefficients because the second operands of both 
multiplications are identical to each other. If the second MSB is 
0, the second action of step 6.2 is Rv+1=Mont(U0, R2v+1), and the 
third action is Rv+1=Mont(U0, R2v+1) or XRv+1=Mont(U1, R2v+1). 
In this case, CT3 also has relatively high correlation coefficients.   

 

Fig. 3. Second-order correlation traces using 200 power traces for 
U=Mont(Udi, U) equipped with fixed clocks. 
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We can know the most significant consecutive 0 bits of the 
secret key by checking continuous sections that have high 
correlation coefficients. However, it is difficult to decide the 
next remaining bits by direct observation. Therefore, we have 
to apply algorithm 5 to CT3, CT4,…, CT1,024 in order to find 
points of interest. Figure 4 shows the variance trace V(CN). 

In Fig. 4, we selected from 100 to 200 points and from 300 
to 400 points having the highest variance values as the points 
of interest. To find the secret key, we summed up correlation 
coefficients within two intervals from 100 to 200 and from 300 
to 400 in each correlation trace, namely from CT2 to CT1,024. 
Figure 5 shows the partial result when summing up correlation 
coefficients in two intervals in each correlation trace from CT2 
to CT32. 

In Fig. 5, the i-th bar is the sum of the correlation coefficients 
CTi+1 of interesting points. If a higher value than the specific 
threshold is observed, this bit and the first bit have the same 
value. Otherwise, this bit is different from the first bit. Because 
the first MSB is 0, the third MSB, indicated by the second bar 
in Fig. 5, is 0, and the fourth MSB, indicated by the third bar, is 

 

 

Fig. 4. Finding points of interest from the correlation trace of Fig. 3.
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Fig. 5. Finding the most significant 32 bits (0x5273f823) of the
private key by summing correlation coefficients of 
interesting points. 
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1. In this case, we were able to find the 1,024-bit secret key 
with about 800 power traces. 

Finally, we consider the case in which a random clock is 
used. Similar to the case in which a fixed clock is used, we first 
find points of interest and then compute the summation of 
correlation coefficients of interesting points. After finishing this 
work, we can classify the same bits and the different bits from 
the first MSB. However, in this case, we need many more 
traces than when a fixed clock is used. Therefore, we found 
only the first 128 bits of the secret key using about 11,000 
power traces. Since our attack requires no knowledge of 
plaintext or ciphertext and uses only the relation of whether 
two consecutive bits are the same or not, we can find the entire 
1,024-bit key by executing the same attack that found a 128-bit 
key 8 more times. 

We assumed that the points of interest were found and then 
tried the Okeya-Sakurai style SODPA in order to compare it 
with our SOCPA. We needed more than 50 traces and 500 
traces in case of Mont(U, Udi), using a fixed clock and a 
random clock, respectively. However, we could find only a few 
bits of the secret key using over 15,000 traces in the case of 
Mont(Udi, U). That is, we failed to recover the entire 1,024-bit 
key by using Okeya-Sakurai style SODPA. This result means 
that our attack method is far more efficient and practical than 
the previously proposed method. Furthermore, it makes the 
process of finding points of interest more automated. 

Based on Table 1, we can conclude that the correlation when 
the second operand is the same is higher than that when the 
first operand is the same. 

3. Extension to Montgomery Ladder Method 

In the previous subsection, we described the SOCPA against 
the BRIP algorithm. Now, we extend the SOCPA against the 
ML method, which is secure against SPA combined with the 

Table 1. Number of traces needed to recover a 1,024-bit key with 
Okeya-Sakurai style SODPA and proposed SOCPA. 

Mont(U, Udi) Mont(Udi, U) 
 

Fixed clock
Random 

clock Fixed clock
Random 

clock 
Okeya-Sakurai  
style SODPA 50 500 n/a n/a 

Our SOCPA 20 70 800 88,000 

 

message blinding method. The algorithm that is secure against 
SPA introduced in [5] is shown here as algorithm 6. In this 
algorithm, we omit the method which makes the message blind 
because blinding methods can be applied variously. However, 
our method can always be successful independent of blinding 
methods. 
 
Algorithm 6. Montgomery ladder method 
Input: X, m, and d = (dn-1dn-2…d1d0)2, where n is the size of modulus 

m. 
Output: Xd mod m. 

1. Compute U0=Mont(X, R2) and U1=Mont(U0, U0). 
2. For i=n – 2 down to 0 do 

2.1. U1-di=Mont(U0, U1). 
2.2. Udi=Mont(Udi, Udi). 

3. Return Mont(U0,1). 

 
Steps 2.1 and 2.2 in the main loop compute Mont(U0, U0) 

and Mont(U0, U1) for di=0 and Mont(U1, U1) and Mont(U0, U1) 
for di=1. That is, the second operands are different for di=0 and 
equal for di=1. As mentioned before, when the second operand 
is the same, the correlation is higher than for the opposite case. 
Therefore, we can check whether a bit is zero or one by 
computing the correlation coefficient between multiplications 
in step 2.1 and 2.2 at each loop. Correlation traces for di=0 
(upper) and di=1 (lower) are shown in Fig. 6. 

IV. New Countermeasure 

Our attack can break the BRIP algorithm proposed to 
prevent SPA, DPA, and RPA because the BRIP algorithm 
manipulates the same operand when each bit of the secret key 
is equal. Most of the left-to-right exponentiation algorithms 
have this kind of weakness. Therefore, we propose a secure 
and efficient countermeasure based on the ML technique 
which aims at removing the dependency between the key bit 
and processed operand. The proposed exponentiation 
algorithm is shown as algorithm 7. 

Algorithm 7 is based on the ML method. However, directly 
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Fig. 6. Correlation traces in the Montgomery ladder, where the
upper graph is the correlation coefficient for di=0, and the 
lower graph is the correlation coefficient for di=1. 
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Algorithm 7. Proposed countermeasure against SODPA 
Input: X, m, d = (dn-1dn-2…d1d0)2, z and 2 ,

n

z− where n is the size of 
modulus m. 
Output: Xd mod m. 
1. If X = 1 then return 1. Else if X = –1 then return 1 – 2d0. 
2. Generate a random value v. 
3. Compute U0=zv mod m and U = ( 2n

z− )v mod m using SPA 
resistant exponentiation. 

4. Compute U0=Mont(U0, R2),U1=Mont(U0, Mont(X, R2) ). 
5. For i=n – 1 down to 0 do 

5.1. Generate the random bit r. 
5.2. U2=Mont(Udi, Ur). 
5.3. U1-r=Mont(U1-r, Udi). 
5.4. Ur=U2.  

6. Return Mont(U0, U). 

applying the ML method to the message blinding method is 
also insecure against our attack. Thus, we have to modify this 
algorithm. In algorithm 6, two multiplications are composed of 
U1-di=Mont(U0, U1) and Udi=Mont(Udi, Udi). We can find the 
secret information from the correlation coefficient trace 
between two multiplications because the location of two 
operands U0 and U1 are fixed during the computation of    
U1-di=Mont(U0, U1). 

The first feature of the proposed algorithm is to change the 

Table 2. Flow of computation in our algorithm and the randomness 
of the operation order including the location of operands. 

di r Montgomery ladder Algorithm 7 

0
U2=Mont(U0, U0) 
U1=Mont(U1, U0) 

U0=U2 0

1

U1=Mont(U0, U1) 
U0=Mont(U0, U0) U2=Mont(U0, U1) 

U0=Mont(U0, U0) 
U1=U2 

0
U2=Mont(U1, U0) 
U1=Mont(U1, U1) 

U0=U2 1

1

U0=Mont(U0, U1) 
U1=Mont(U1, U1) U2=Mont(U1, U1) 

U0=Mont(U0, U1) 
U1=U2 

 
 

location of two operands U0 and U1 of U1-di=Mont(U0, U1) 
randomly. This is enough to defend against our attack. 
However, we try to eliminate any dependency between 
computed values in the previous bit and loaded values in the 
present bit. The second feature of our countermeasure is to 
change the order of two operations U1-di=Mont(U0, U1) and 
Ud=Mont(Udi, Udi) randomly. 

Table 2 presents the correctness of our proposed 
countermeasure and the randomness of the order of operations 
including the location of operands. 

In our algorithm, the input message X is blinded by a random 
value zv, where z is the random value stored in the ROM. We 
can know the output value after exponentiation because our 
algorithm always computes two multiplications, U1-di= 
Mont(U0, U1) and Udi=Mont(Udi, Udi) in step 5. After finishing 
exponentiation, the blinding factor becomes 2( )

nvz ; therefore, 
we have to remove the random blinding factor to obtain a 
correct value. To remove this blinding factor, the random value 

2n

z− must be stored inside a smart card, and zv and ( 2n

z− )v are 
initially computed at each new execution by computing 
exponentiation using a 48-bit random exponent v. 

1. Security Analysis 

As mentioned before, our algorithm is basically designed to 
combine the ML method with the message blinding method. 
Therefore, our algorithm is secure against SPA, DPA, and RPA.  

Next, we consider the security against SODPA or SOCPA. In 
our algorithm, when di=0, U2=Mont(U0, U0) and  
U1=Mont(U1, U0) for r = 0, and U2=Mont(U0, U1) and 
U0=Mont(U0, U0) for  r = 1. The correlation coefficient for 
r=0 is higher than that for r=1, because the second operand is 
the same when r=0. Therefore, if we compute correlation 
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coefficients between the first multiplication and the second one, 
the peak of the correlation coefficient is reduced by half 
compared with the case of r=0 because of the random decision 
of r. In the other case, when di=1, U2=Mont(U1, U0) and 
U1=Mont(U1, U1) for  r = 0, and U2=Mont(U1, U1) and 
U0=Mont(U0, U1) for r = 1. For the same reason, when di=0 the 
peak of the correlation coefficient is reduced by half compared 
with the case when r=1. In conclusion, the peaks are always the 
same, independent of the secret key bit. Figure 7 shows 
correlation traces for di=0 (upper) and di=1 (lower). Therefore, 
our countermeasure is secure against the proposed SOCPA as 
well as SPA, DPA, RPA, and SODPA. 

2. Efficiency Comparison 

Our algorithm has almost the same computational cost as the 
BRIP algorithm. Although our algorithm requires additional 
ROM for z and 2n

z− , ROM is comparatively sufficient in 
crypto devices. Both algorithms require two exponentiations by 
v and one main exponentiation using the secret key d. Let t and 
n be the bit sizes of v and d. Then, the computational cost of the 
BRIP method is 3tM + 2nM + 5M, where we assume that the 
exponentiation by v is computed with a binary method secure 
against SPA, and M denotes the computational time of a 
multiplication. The computational cost of our method is 3tM + 
2nM + 4M.  

The exponent splitting (ES) Xr Xd-r mod m requires two 
 

 

Fig. 7. Correlation traces in our algorithm, where the upper trace 
is the correlation coefficient for di=0 and the lower trace is 
the correlation coefficient for di=1. 
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Table 3. Performance comparison of the proposed algorithm with 
other algorithms for a 1024-bit key. 

 BRIP ES IES Ours 

Computational cost 2,197M 3,072M 1,664M 2,196M

Inverse requirement No No Yes No 

Additional ROM No No No 2×1,024 
bits 

  
 
exponentiations. If it uses the binary method using atomicity [3], 
then the computational cost is 3nM. In the case of improved 
exponent splitting (IES) (Xr)[d/r]X(d mod r) mod m, if it uses the 
simultaneous method for two exponentiations (Xr)[d/r] mod m and 
X(d mod r) mod m, and the size of a random number r is n/2, then 
the computation cost is 13/8nM. However, it requires the inverse 
of r which takes a long computation time and large memory. 

Table 3 shows a performance comparison of our algorithm 
with other countermeasures. In this table, we suppose that the 
length of the random number v in both the BRIP algorithm and 
our algorithm is 48 bits. Our algorithm requires more 
multiplications than the IES method; however, since the IES 
method requires the computation of inverse values, our 
algorithm is more suitable for RSA cryptosystems. 

V. Conclusion 

In this paper, we have proposed a practical SOCPA. The first 
advantage of our attack is that it is able to find points of interest 
easily, which is the most fundamental issue in mounting a high-
order DPA. Namely, our attack method can work without AOS 
because no profiling stage is required. The second advantage of 
our attack is that it can find the secret key from a smaller 
number of power traces, compared with the previous SODPA. 
In addition, our attack does not require any knowledge about 
plaintext or ciphertext. Therefore, our attack can be easily 
applied to CRT RSA and various algorithms such as the basic 
ML method. 

We have also proposed an efficient countermeasure against 
the proposed SOCPA as well as SPA, DPA, RPA, and SODPA. 
We have constituted the ML type method equipped with the 
message blinding method, which does not require any 
additional computation, including inverse computation. 
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