• 제목/요약/키워드: SiRNA

검색결과 645건 처리시간 0.031초

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan;Zhou Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.398-409
    • /
    • 2023
  • LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

ppGalNAc T1 as a Potential Novel Marker for Human Bladder Cancer

  • Ding, Ming-Xia;Wang, Hai-Feng;Wang, Jian-Song;Zhan, Hui;Zuo, Yi-Gang;Yang, De-Lin;Liu, Jing-Yu;Wang, Wei;Ke, Chang-Xing;Yan, Ru-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5653-5657
    • /
    • 2012
  • Objectives: To investigate the effect of glycopeptide-preferring polypeptide GalNAc transferase 1 (ppGalNAc T1 ) targeted RNA interference (RNAi) on the growth and migration of human bladder carcinoma EJ cells in vitro and in vivo. Methods: DNA microarray assays were performed to determine ppGalNAc Ts(ppGalNAc T1-9) expression in human bladder cancer and normal bladder tissues. We transfected the EJ bladder cancer cell line with well-designed ppGalNAc T1 siRNA. Boyden chamber and Wound healing assays were used to investigate changes of shppGalNAc T1-EJ cell migration. Proliferation of shppGalNAc T1-EJ cells in vitro was assessed using [3H]-thymidine incorporation assay and soft agar colony formation assays. Subcutaneous bladder tumors in BALB/c nude mice were induced by inoculation of shppGalNAc T1-EJ cells and after inoculation diameters of tumors were measured every 5 days to determine gross tumor volumes. Results: ppGalNAc T1 mRNA in bladder cancer tissues was 11.2-fold higher than in normal bladder tissues. When ppGalNAc T1 expression in EJ cells was knocked down through transfection by pSUPER-shppGalNAc T1 vector, markedly reduced incorporation of [3H]-thymidine into DNA of EJ cells was observed at all time points compared with the empty vector transfected control cells. However, ppGalNAc T1 knockdown did not significantly inhibited cell migration (only 12.3%). Silenced ppGalNAc T1 expression significantly inhibited subcutaneous tumor growth compared with the control groups injected with empty vector transfected control cells. At the end of observation course (40 days), the inhibitory rate of cancerous growth for ppGalNAc T1 knockdown was 52.5%. Conclusion: ppGalNAc T1 might be a potential novel marker for human bladder cancer. Although ppGalNAc T1 knockdown caused no remarkable change in cell migration, silenced expression significantly inhibited proliferation and tumor growth of the bladder cancer EJ cell line.

플라보노이드 루테올린의 lippopolysacharide로 유도한 type 1 interferon 억제 효과 (Flavonoid Luteolin Inhibits LPS-induced Type I Interferon in Primary Macrophages)

  • 정원석;배기상;조창래;박경철;구본순;김민선;함경완;조범연;조길환;서상완;이시우;송호준;박성주
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.986-992
    • /
    • 2009
  • Type I interferons (IFNs) are critical mediators of the innate immune system to defend viral infection. Interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) play critical roles in type I IFN production in response to viral infection. Luteolin is natural polyphenolic compounds that have anti-inflammatory, cytoprotective and anti-carcinogenic effects. However, the mechanism of action and impact of luteolin on innate immunity is still unknown. In this study, we examined the effects of luteolin on the lipopolysacchride (LPS)-induced inflammatory responses. Luteolin inhibited Type I IFNs expression of mRNA and increased interleukin(IL)-10 expression of mRNA. Next, we examined the protective effects of IL-10 using IL-10 neutralizing antibody (IL-10NA). Blockade of IL-10 action didn't cause a significant reduction of Type I IFNs than LPS-induced luteolin pretreatment. Pretreatment of luteolin inhibited the level of IRF-1, and IRF-7 mRNA and the nuclear translocation of IRF-3. Also, luteolin reduced the activation of STAT - 1, 3. Theses results suggest that luteolin inhibits LPS-induced the production of Type I IFNS by both IRFs and STATs not IL-10 and may be a beneficial drug for the treatment of inflammatory disease.

PU.1 Is Identified as a Novel Metastasis Suppressor in Hepatocellular Carcinoma Regulating the miR-615-5p/IGF2 Axis

  • Song, Li-Jie;Zhang, Wei-Jie;Chang, Zhi-Wei;Pan, Yan-Feng;Zong, Hong;Fan, Qing-Xia;Wang, Liu-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3667-3671
    • /
    • 2015
  • Invasion and metastasis is the major cause of tumor recurrence, difficulty for cure and low survival rate. Excavating key transcription factors, which can regulate tumor invasion and metastasis, are crucial to the development of therapeutic strategies for cancers. PU.1 is a master hematopoietic transcription factor and a vital regulator in life. Here, we report that, compared to adjacent non-cancerous tissues, expression of PU.1 mRNA in metastatic hepatocellular carcinoma (HCC), but not primary HCC, was significantly down-regulated. In addition, levels of PU.1 mRNA in metastatic hepatoma cell lines MHCC97L and MHCC97H were much lower than in non-metastatic Hep3B cells. Transwell invasion assays after PU.1 siRNA transfection showed that the invasion of hepatoma cell lines was increased markedly by PU.1 knockdown. Oppositely, overexpression of PU.1 suppressed the invasion of these cells. However, knockdown and overexpression of PU.1 did not influence proliferation. Finally, we tried to explore the potential mechanism of PU.1 suppressing hepatoma cell invasion. ChIP-qPCR analysis showed that PU.1 exhibited a high binding capacity with miR-615-5p promoter sequence. Overexpression of PU.1 caused a dramatic increase of pri-, pre- and mature miR-615-5p, as well as a marked decrease of miR-615-5p target gene IGF2. These data indicate that PU.1 inhibits invasion of human HCC through promoting miR-615-5p and suppressing IGF2. These findings improve our understanding of PU.1 regulatory roles and provided a potential target for metastatic HCC diagnosis and therapy.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

  • Jung, Jong Gab;Yi, Sang-A;Choi, Sung-E;Kang, Yup;Kim, Tae Ho;Jeon, Ja Young;Bae, Myung Ae;Ahn, Jin Hee;Jeong, Hana;Hwang, Eun Sook;Lee, Kwan-Woo
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1037-1043
    • /
    • 2015
  • The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. 1 TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-$phosphoelF2{\alpha}$-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance.

Identification of Protein Arginine Methyltransferase 5 as a Regulator for Encystation of Acanthamoeba

  • Moon, Eun-Kyung;Hong, Yeonchul;Chung, Dong-Il;Goo, Youn-Kyoung;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.133-138
    • /
    • 2016
  • Encystation is an essential process for Acanthamoeba survival under nutrient-limiting conditions and exposure to drugs. The expression of several genes has been observed to increase or decrease during encystation. Epigenetic processes involved in regulation of gene expression have been shown to play a role in several pathogenic parasites. In the present study, we identified the protein arginine methyltransferase 5 (PRMT5), a known epigenetic regulator, in Acanthamoeba castellanii. PRMT5 of A. castellanii (AcPRMT5) contained domains found in S-adenosylmethionine-dependent methyltransferases and in PRMT5 arginine-N-methyltransferase. Expression levels of AcPRMT5 were increased during encystation of A. castellanii. The EGFP-PRMT5 fusion protein was mainly localized in the nucleus of trophozoites. A. castellanii transfected with siRNA designed against AcPRMT5 failed to form mature cysts. The findings of this study lead to a better understanding of epigenetic mechanisms behind the regulation of encystation in cyst-forming pathogenic protozoa.

Identification of the genes which related cold (low temperature) stress in Bombyx mori

  • Kang, Min-Uk;Choi, Kwang-Ho;Park, Kwan-Ho;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제33권2호
    • /
    • pp.102-107
    • /
    • 2016
  • Stress may be defined as any modification of environmental parameters that leads to a response by biological organisms. Stresses that affect biolpgical structures may be nonthermal, such as ultraviolet radiation, pH, or salinity, or thermal. Temperture is one of the major stresses that all living organism face. The major effects of cold(low emperature) are decrease of membrane fluidity and the stabilization of secondary structures of RNA and DNA in the cells, which may effect the efficiency of translation, transcription, and DNA replication. In this study, we focus on discovering the genes that are expressed by the cold(low temperature) stress in the silkworm. In cold(low temperature) stress test, we found 100% survive from cold stress at $0^{\circ}C$ up to 12h and $-5^{\circ}C$ up to 2h, and then, survive rate was rapidly decrease in silkworm. Thereafter two whole genes have selected by SSH(Suppression subtractive hybridization). (GenBank accession : GQ149511, GQ338156)

Upregulation of Fas in epithelial ovarian cancer reverses the development of resistance to Cisplatin

  • Fan, Yang;Wang, Long;Han, Xuechuan;Liu, Xueqin;Ma, Hongyun;Ding, Yonghui
    • BMB Reports
    • /
    • 제48권1호
    • /
    • pp.30-35
    • /
    • 2015
  • This study was to investigate the role of Fas in the development of Cisplatin-resistant ovarian cancer. On the cellular level, Fas expression was significantly reduced in Cisplatin resistant A2780 (A2780/CP) cells compared with A2780 cells. Fas silence with siRNA would promote tumor cell lines proliferation, facilitate tumor cell cycle transition of G1/S, prevent cell apoptosis, and promote cell migration. Expression of drug resistance gene was negatively correlated to Fas. In nude mice metastasis model of human ovarian carcinoma by subcutaneous transplantation, after Ad-Fas injected intratumorly, we found that upregulation of Fas could inhibit transplantation tumor tissue growth and reduce the expression of drug resistance gene. Our results indicated that upregulation of Fas in epithelial ovarian cancer reversed the development of resistance to Cisplatin. In conclusion, our findings suggested that Fas might act as a promising therapeutic target for improvement of the sensibility to Cisplatin in ovarian cancer.

Syntenin Is Expressed in Human Follicular Dendritic Cells and Involved in the Activation of Focal Adhesion Kinase

  • Cho, Whajung;Kim, Hyeyoung;Lee, Jeong-Hyung;Hong, Seung Hee;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.199-204
    • /
    • 2013
  • Syntenin is an adaptor molecule containing 2 PDZ domains which mediate molecular interactions with diverse integral or cytoplasmic proteins. Most of the results on the biological function of syntenin were obtained from studies with malignant cells, necessitating exploration into the role of syntenin in normal cells. To understand its role in normal cells, we investigated expression and function of syntenin in human lymphoid tissue and cells in situ and in vitro. Syntenin expression was denser in the germinal center than in the extrafollicular area. Inside the germinal center, syntenin expression was obvious in follicular dendritic cells (FDCs). Flow cytometric analysis with isolated cells confirmed a weak expression of syntenin in T and B cells and a strong expression in FDCs. In FDC-like cells, HK cells, most syntenin proteins were found in the cytoplasm compared to weak expression in the nucleus. To study the function of syntenin in FDC, we examined its role in the focal adhesion of HK cells by depleting syntenin by siRNA technology. Knockdown of syntenin markedly impaired focal adhesion kinase phosphorylation in HK cells. These results suggest that syntenin may play an important role in normal physiology as well as in cancer pathology.