• Title/Summary/Keyword: SiRNA

Search Result 645, Processing Time 0.025 seconds

Long Noncoding RNA HOXA11-AS Modulates the Resistance of Nasopharyngeal Carcinoma Cells to Cisplatin via miR-454-3p/c-Met

  • Lin, Feng-Jie;Lin, Xian-Dong;Xu, Lu-Ying;Zhu, Shi-Quan
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.856-869
    • /
    • 2020
  • To elucidate the mechanism of action of HOXA11-AS in modulating the cisplatin resistance of nasopharyngeal carcinoma (NPC) cells. HOXA11-AS and miR-454-3p expression in NPC tissue and cisplatin-resistant NPC cells were measured via quantitative reverse transcriptase polymerase chain reaction. NPC parental cells (C666-1 and HNE1) and cisplatin-resistant cells (C666-1/DDP and HNE1/DDP) were transfected and divided into different groups, after which the MTT method was used to determine the inhibitory concentration 50 (IC50) of cells treated with different concentrations of cisplatin. Additionally, a clone formation assay, flow cytometry and Western blotting were used to detect DDP-induced changes. Thereafter, xenograft mouse models were constructed to verify the in vitro results. Obviously elevated HOXA11-AS and reduced miR-454-3p were found in NPC tissue and cisplatin-resistant NPC cells. Compared to the control cells, cells in the si-HOXA11-AS group showed sharp decreases in cell viability and IC50, and these results were reversed in the miR-454-3p inhibitor group. Furthermore, HOXA11-AS targeted miR-454-3p, which further targeted c-Met. In comparison with cells in the control group, HNE1/DDP and C666-1/DDP cells in the si-HOXA11-AS group demonstrated fewer colonies, with an increase in the apoptotic rate, while the expression levels of c-Met, p-Akt/Akt and p-mTOR/mTOR decreased. Moreover, the si-HOXA11-AS-induced enhancement in sensitivity to cisplatin was abolished by miR-454-3p inhibitor transfection. The in vivo experiment showed that DDP in combination with si-HOXA11-AS treatment could inhibit the growth of xenograft tumors. Silencing HOXA11-AS can inhibit the c-Met/AKT/mTOR pathway by specifically upregulating miR-454-3p, thus promoting cell apoptosis and enhancing the sensitivity of cisplatin-resistant NPC cells to cisplatin.

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers

  • Chun, Ho-Kyung;Chung, Kyung-Sook;Kim, Hee-Cheol;Kang, Jung-Eun;Kang, Min-Ah;Kim, Jong-Tae;Choi, Eun-Hwa;Jung, Kyeong-Eun;Kim, Moon-Hee;Song, Eun-Young;Kim, Seon-Young;Won, Mi-Sun;Lee, Hee-Gu
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.349-354
    • /
    • 2010
  • Previously, we reported that overexpression of Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) caused multi-septa formation and growth defects, both of which are considered cancer-related phenotypes. To evaluate OIP5 as a possible cancer therapeutic target, we examined its expression level in 66 colorectal cancer patients. OIP5 was upregulated about 3.7-fold in tumors and over 2-fold in 58 out of 66 colorectal cancer patients. Knockdown of OIP5 expression by small interfering RNA specific to OIP5 (siOIP5) resulted in growth inhibition of colorectal and gastric cancer cell lines. Growth inhibition of SNU638 by siOIP5 caused an increase in sub-G1 DNA content, as measured by flow cytometry, as well as an apoptotic gene expression profile. These results indicate that knockdown of OIP5 may induce apoptosis in cancer cells. Therefore, we suggest that OIP5 might be a potential cancer therapeutic target, although the mechanisms of OIP5-induced carcinogenesis should be elucidated.

Role of CXCR7 and Effects on CXCL12 in SiHa Cells and Upregulation in Cervical Squamous Cell Carcinomas in Uighur Women

  • Kurban, Shajidai;Tursun, Mikrban;Kurban, Gulinar;Hasim, Ayshamgul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9211-9216
    • /
    • 2014
  • CXCR7 is involved in tumor development and metastasis in multiple malignancies. However, the function and molecular mechanisms of action of CXCR7 in human cervical cancer are still unclear. In the present study a loss of-function approach was used to observe the effects of recombinant CXCR7 specific small interfering RNA pBSilence1.1 plasmids on biological behavior including proliferative activity and invasive potential, as indicated by MTT assays with the cervical cancer SiHa cell line in vitro. Reverse transcription polymerase chain reaction and Western blotting revealed that CXCR7 was downregulated in transfected compared with control cells, associated with inhibited cell growth, invasiveness and migration. The expression of CXCR7 and CXCL12 was also determined immunohistochemically in 152 paraffin-embedded, cervical squamous cell carcinoma (CSCC) and cervical intraepithelial neoplasia (CIN), or normal cervical epithelial to assess clinico-pathological pattern and CXCR7 status with respect to cell differentiation and lymph node metastasis in Uighur patients with CSCC. CXCR7 and CXCL12 expression was higher in cervical cancer than CIN and normal cervical mucosa, especially in those with higher stage and lymph node metastasis. CXCL12 appeared to be positively regulated by CXCR7 at the post-transcriptional level in CSCC. We propose that aberrant expression of CXCR7 plays a role in carcinogenesis, differentiation and metastasis of CSCC, implying its use as a potential target for clinical biomarkers in differentiation and lymph node metastasis.

Cell to Cell Interaction Can Activate Membrane-bound APRIL Which Are Expressed on Inflammatory Macrophages

  • Lee, Sang-Min;Kim, Won-Jung;Suk, Kyoung-Ho;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.10 no.5
    • /
    • pp.173-180
    • /
    • 2010
  • Background: APRIL, originally known as a cytokine involved in B cell survival, is now known to regulate the inflammatory activation of macrophages. Although the signal initiated from APRIL has been demonstrated, its role in cellular activation is still not clear due to the presence of BAFF, a closely related member of TNF superfamily, which share same receptors (TACI and BCMA) with APRIL. Methods: Through transfection of siRNA, BAFF-deficient THP-1 cells (human macrophage-like cells) were generated and APRIL-mediated inflammatory activities were tested. The expression patterns of APRIL were also tested in vivo. Results: BAFF-deficient THP-1 cells responded to APRIL-stimulating agents such as monoclonal antibody against APRIL and soluble form of TACI or BCMA. Furthermore, co-incubation of the siBAFF-deficient THP-1 cells with a human B cell line (Ramos) resulted in an activation of THP-1 cells which was dependent on interactions between APRIL and TACI/BCMA. Immunohistochemical analysis of human pathologic samples detected the expression of both APRIL and TACI in macrophage-rich areas. Additionally, human macrophage primary culture expressed APRIL on the cell surface. Conclusion: These observations indicate that APRIL, which is expressed on macrophages in pathologic tissues with chronic inflammation, may mediate activation signals through its interaction with its counterparts via cell-to-cell interaction.

Differential expression of αB-crystallin causes maturation-dependent susceptibility of oligodendrocytes to oxidative stress

  • Kim, Ji Young;Lee, Eun Young;Sohn, Hyun Joon;Kim, Si Wook;Kim, Chan Hyung;Ahn, Hee Yul;Kim, Dong Woon;Cho, Sa Sun;Seo, Je Hoon
    • BMB Reports
    • /
    • v.46 no.10
    • /
    • pp.501-506
    • /
    • 2013
  • Oligodendrocyte precursor cells (OPCs) are most susceptible to oxidative stress in the brain. However, the cause of differences in susceptibility to oxidative stress between OPCs and mature oligodendrocytes (mOLs) remains unclear. Recently, we identified in vivo that ${\alpha}B$-crystallin (aBC) is expressed in mOLs but not in OPCs. Therefore, we examined in the present study whether aBC expression could affect cell survival under oxidative stress induced by hydrogen peroxide using primary cultures of OPCs and mOLs from neonatal rat brains. Expression of aBC was greater in mOLs than in OPCs, and the survival rate of mOLs was significantly higher than that of OPCs under oxidative stress. Suppression of aBC by siRNA transfection resulted in a decrease in the survival rate of mOLs under oxidative stress. These data suggest that higher susceptibility of OPCs than mOLs to oxidative stress is due, at least in part, to low levels of aBC expression.

Evaluation of Local Lymph Node Assay as an Alternative Method for Skin Sensitization Potential in Baltic Mice (Balb/c 마우스에서 Local Lymph Node Assay(LLNA)를 01용한 피부 감작성 시험 대체시험법 연구)

  • 이종권;황인창;박재현;김형수;정승태;엄준호;오혜영
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.175-181
    • /
    • 2002
  • Allergic contact dermatitis (skin sensitization) may be caused by a wide variety of chemicals. A murine local lymph node assay (LLNA) has been developed as an alternative to guinea pig models for assessing the contact sensitization potential of chemical. This study was carried out to evaluate the skin sensitization potential for chemicals in Balb/c mice by LLNA. Contact allergen, dinitrochlorobenzene (DNCB), respiratory allergen, toluene diisocyanate (TDI) and a weak allergen, $\alpha$-hexlycinnamaldehyde (HCA) were wed as positive chemicals and irritant, sodium lauryl sulfate(SLS) also wed as a reference chemical in this study. The weights of lymph node in the mice treated with DNCB, TDI, and HCA were increased compared to vehicle control. There was a significant increase in lymph node weight of mice treated with high concentration of SLS compared to vehicle control. The stimulation index (SI) of Lymph node cell in the mice treated with DNCB, TDI, and HCA revealed over three-fold increase compared to vehicle control by $3^H$-thymidine uptake. All allergens correctly identified in this LLNA study wing Balb/c mice. These results suggest that LLNA wing Balb/c mice could be a useful method for screening the allergenic potential of chemicals. The expression of IL-2 mRNA was slightly increased in draining auricular lymph node cell of the mice treated with TDI and HCA by RT-PCR. However the IL-2 levels in DNCB and SLS of treated animals were not significantly changed.

IL-4 Independent Nuclear Translocalization of STAT6 in HeLa Cells by Entry of Toxoplasma gondii

  • Ahn, Hye-Jin;Kim, Ji-Yeon;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • Toxoplasma gondii provokes rapid and sustained nuclear translocation of the signal transducer and activator of transcription 6 (STAT6) in HeLa cells. We observed activation of STAT6 as early as 2hr after infection with T. gondii by the nuclear translocation of fluorescence expressed from exogenously transfected pDsRed2-STAT6 plasmid and by the detection of phosphotyrosine-STAT6 in Western blot. STAT6 activation occurred only by infection with live tachyzoites but not by co-culture with killed tachyzoites or soluble T. gondii extracts. STAT6 phosphorylation was inhibited by small interfering RNA of STAT6 (siSTAT6). In view of the fact that STAT6 is a central mediator of IL-4 induced gene expression, activation of STAT6 by T. gondii infection resembles that infected host cells has been stimulated by IL-4 treatment. STAT1 was affected to increase the transcription and expression by the treatment of siSTAT6. STAT6 activation was not affected by any excess SOCS's whereas that with IL-4 was inhibited by SOCS-1 and SOCS-3. T. gondii infection induced Eotaxin-3 gene expression which was reduced by $IFN-{\gamma}$. These results demonstrate that T. gondii exploits host STAT6 to take away various harmful reactions by $IFN-{\gamma}$. This shows, for the first time, IL-4-like action by T. gondii infection modulates microbicidal action by $IFN-{\gamma}$ in infected cells.

Particulate Matter-Induced Aryl Hydrocarbon Receptor Regulates Autophagy in Keratinocytes

  • Jang, Hye sung;Lee, Ji eun;Myung, Cheol hwan;Park, Jong il;Jo, Chan song;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.570-576
    • /
    • 2019
  • Particulate matter (PM), which refers to the mixture of particles present in the air, can have harmful effects. Damage to cells by PM, including disruption of organelles and proteins, can trigger autophagy, and the relationship between autophagy and PM has been well studied. However, the cellular regulators of PM-induced autophagy have not been well characterized, especially in keratinocytes. The Aryl Hydrocarbon Receptor (AhR) is expressed in the epidermis and is activated by PM. In this study, we investigated the role of the AhR in PM-induced autophagy in HaCaT cells. Our results showed that PM led to AhR activation in keratinocytes. Activation of the AhR-target gene CYP1A1 by PM was reduced by co-treatment with ${\alpha}$-naphthoflavone (${\alpha}-NF$), an AhR inhibitor. We also evaluated activation of the autophagy pathway in PM-treated keratinocytes. In HaCaT cells, treatment with PM treatment led to the induction of microtubules-associated proteins light chain 3 (LC3) and p62/SQSTM1, which are essential components of the autophagy pathway. To study the role of the AhR in mediating PM-induced autophagy, we treated cells with ${\alpha}-NF$ or used an siRNA against AhR. Expression of LC3-II induced by PM was decreased in a dose dependent manner by ${\alpha}-NF$. Furthermore, knockdown of AhR with siAhR diminished PM-induced expression of LC3-II and p62. Together, these results suggest that inhibition of the AhR decreases PM-induced autophagy. We confirmed these results using the autophagy-inhibitors BAF and 3-MA. Taken together, our results indicate that exposure to PM induces autophagy via the AhR in HaCaT keratinocytes.

Cardamonin Inhibited IL-1β Induced Injury by Inhibition of NLRP3 Inflammasome via Activating Nrf2/NQO-1 Signaling Pathway in Chondrocyte

  • Jiang, Jianqing;Cai, Mingsong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.794-802
    • /
    • 2021
  • In this study we investigated the role and mechanism of cardamonin on IL-1β induced injury in OA. CHON-001 cells were treated with cardamonin and IL-1β and transfected with silencing nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability was detected by Cell Counting Kit-8 assay and flow cytometer assay was utilized for cell apoptosis assessment. IL-6, IL-8, TNF-α and Nrf2 mRNA expression was tested by qRT-PCR. Western blot was employed to evaluate MMP-3, MMP-13, Collagen II, Nrf2, NQO-1, NLRP3, Caspase 1 and apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) protein levels. In CHON-001 cells, IL-1β suppressed cell viability and Collagen II level while promoting cell apoptosis and expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-α), MMPs (MMP-3, MMP-13), NQO-1, and NLRP3 inflammasome (NLRP3, Caspase 1 and ASC), with no significant influence on Nrf2. Cardamonin reversed the effect of IL-1β on cell viability, cell apoptosis, pro-inflammatory cytokines, MMPs, Collagen II, and NLRP3 inflammasome levels. In addition, cardamonin advanced Nrf2 and NQO-1 expression of CHON-001 cells. SiNrf2 reversed the function of cardamonin on IL-1β-induced cell apoptosis and expression of pro-inflammatory cytokines, Nrf2, NQO-1, and NLRP3 inflammasome in chondrocytes. Taken together Cardamonin inhibited IL-1β induced injury by inhibition of NLRP3 inflammasome via activating Nrf2/NQO1 signaling pathway in chondrocyte.