• Title/Summary/Keyword: SiRNA

Search Result 631, Processing Time 0.025 seconds

Cytokine expression and localization during the development of glomerulosclerosis in FGS mice

  • Park, Sang-Joon;Lee, Sae-Bom;Lee, Young-Ho;Ryu, Si-Yun;Jeong, Kyu-Shik;Lee, Cha-Soo
    • Korean Journal of Veterinary Pathology
    • /
    • v.3 no.1
    • /
    • pp.15-25
    • /
    • 1999
  • To elucidate the mechanism of age-related development in FGS/NgaKIST mice with spontaneous glomerulosclerotic lesion, we examined expression and localization of various cytokine mRNA in the kidney in the progression of diseases. This mouse model is the first to develop spontanously occuring glomerosclerotic lesion in the kidney. In this study, we detected the up-regulation of local cytokine genes such as IL-1$\beta$, IL-2, IL-6, IL-10, TNF-$\alpha$, TGF-$\beta$, and IFN- $\gamma$ in the kidneys. In RT-PCR and Southern blot analysis, we detected gradual expressions of cytokine mRNA of IL-1$\beta$, IL-2, IL-6, IFN- $\gamma$, and TNF $\alpha$ mRNA during the course of disease. Other cytokines including IL -10 and TGF -$\beta$ were found to be appeared the slightly expressed level at 3 to 12 weeks before onset of inflammatory lesion but they are highly expressed at the end-stage of the disease accompaning high proteinurea and wasting. In situ RT-PCR, each cytokine mRNA were specifically localized in a variety of cells including mesangial, endothelial, parietal epithelial, tubular epithelial, arterial muscle cell, and infiltrated inflammatory cells. In addition, TNF - $\alpha$was detected moderately in the visceral and parietal epithelial cell, but weakly in endothelial and mesangial cells, whereas IL-1 $\beta$ and IL -6 were strong in mesangial regions. IL-6 and TNF- $\alpha$ was highly localized in the damaged proximal and collecting tubules. Especially, TGF -$\beta$ mRNA was highly found in mesangial cells within glomerulus and interstitium during the end-stage of this disease.. These results indicate that pro inflammatory cytokines such as IL-1 $\beta$, IL-2, IL-6, and TNF- $\alpha$ were gradually expressed from the early stage of this disease to the end-stage, and that IL-10 and TGF-$\beta$ may be important in the accumulation of extracellular matrix(ECM) within glomerulus and periglomerular fibrosis in the progression of this disease as well as tissue destruction in end-stage of this disease.

  • PDF

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

Lysophosphatidic Acid-Induced TWIST1 and Slug Expression in Oral Cancer Cell Invasion

  • Cho, Kyung Hwa
    • Journal of dental hygiene science
    • /
    • v.17 no.5
    • /
    • pp.433-438
    • /
    • 2017
  • Relative to its incidence, oral cancer has serious negative social effects. The exact causes of oral cancer have not been clarified, but many studies have implicated smoking and drinking. However, the fundamental mechanism of oral cancer causation has yet to be elucidated. Lysophosphatidic acid (LPA) augments epithelial mesenchymal transition (EMT) and development of various cancer cells. However, a detailed mechanistic explanation for LPA-induced EMT and the effects of EMT-promoting conditions on oral squamous cell carcinoma development remain elusive. In the present study, a quantitative reverse transcription polymerase chain reaction was used to analyze TWIST1, Slug, E-cadherin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcript expression. Immunoblotting was used to analyze TWIST1, Slug, E-cadherin, and GAPDH protein expression. siRNAs were used to silence TWIST1 and Slug transcript expression. A matrigel-coated in vitro invasion insert was used to analyze oral cancer cell invasion. The results of the present study show that the expression levels of TWIST1 and Slug, which are EMT factors, were increased by LPA treatment in YD-10B oral squamous cell carcinoma. Conversely, E-cadherin expression was significantly reduced. In addition, transfection of the cells with TWIST1 and Slug siRNA strongly inhibited LPA-induced oral cancer cell invasion. The present study shows that TWIST1 and Slug mediate LPA-induced oral cancer cell EMT and invasiveness. The present study confirmed the mechanism by which LPA promotes oral cancer cell development, with TWIST1 and Slug providing novel biomarkers and promising therapeutic targets for oral cancer cell development.

Chromatin-remodeling Factor INI1/hSNF5/BAF47 Is Involved in Activation of the Colony Stimulating Factor 1 Promoter

  • Pan, Xuefang;Song, Zhaoxia;Zhai, Lei;Li, Xiaoyun;Zeng, Xianlu
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • INI1/hSNF5/BAF47 is a core component of the hSWI/ SNF ATP-dependent chromatin remodeling complex, and it has been implicated in regulating gene expression, cell division and tumorigenesis. We investigated whether INI1/hSNF5/BAF47 functions in activation of the colony stimulating factor 1 (CSF1) promoter in HeLa cells. Overexpression of INI1/hSNF5/BAF47 promoted CSF1 transcription, and siRNA targeting INI1/hSNF5/ BAF47 (siINI1) strongly inhibited the activity of the CSF1 promoter. We demonstrated that all conserved domains of INI1/hSNF5/BAF47 are needed for CSF1 transcription. ChIP experiment showed that INI1/ hSNF5/BAF47 is recruited to the region of the CSF1 promoter. Taken together, these results indicate that INI1/hSNF5/BAF47 is involved in activation of the CSF1 promoter.

Evaluation of Commercial Complementary DNA Synthesis Kits for Detecting Human Papillomavirus (인유두종바이러스 검출을 위한 상용화된 cDNA 합성 키트의 평가)

  • Yu, Kwangmin;Park, Sunyoung;Chang, Yunhee;Hwang, Dasom;Kim, Geehyuk;Kim, Jungho;Kim, Sunghyun;Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.309-315
    • /
    • 2019
  • Cervical cancer is the fourth most common malignant neoplasm in women worldwide. Most cases of cervical cancer are caused by an infection by the human papillomavirus. Molecular diagnostic methods have emerged to detect the HPV for sensitivity, specificity, and objectivity. In particular, real-time PCR has been introduced to acquire a more sensitive target DNA or RNA. RNA extraction and complementary DNA synthesis are proceeded before performing real-time PCR targeting RNA. To identify an adequate and sensitive cDNA synthesis kit, this study evaluated the two commonly used kits for cDNA synthesis. The results show that the $R^2$ and efficiency (%) of the two cDNA synthesis kits were similar in the cervical cancer cell lines. On the other hand, the Takara kit compared to Invitrogen kit showed P<0.001 in the $10^2$ and $10^3$ SiHa cell count. The Takara kit compared to the Invitrogen kit showed P<0.001 in the $10^1$ and $10^2$ HeLa cell count. Furthermore, 8, 4, 2, 1, and 0.5 ml of forty exfoliated cell samples were used to compare the cDNA synthesis kits. The Takara kit compared to the Invitrogen kit showed P<0.01 in 8, 4, and 1 ml and P<0.05 in 0.5 mL. The study was performed to identify the most appropriate cDNA synthesis kit and suggests that a cDNA synthesis kit could affect the real-time PCR results.

Anti-Apoptotic Effects of SERPIN B3 and B4 via STAT6 Activation in Macrophages after Infection with Toxoplasma gondii

  • Song, Kyoung-Ju;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • $Toxoplasma$ $gondii$ penetrates all kinds of nucleated eukaryotic cells but modulates host cells differently for its intracellular survival. In a previous study, we found out that serine protease inhibitors B3 and B4 (SERPIN B3/B4 because of their very high homology) were significantly induced in THP-1-derived macrophages infected with $T.$ $gondii$ through activation of STAT6. In this study, to evaluate the effects of the induced SERPIN B3/B4 on the apoptosis of $T.$ $gondii$-infected THP-1 cells, we designed and tested various small interfering (si-) RNAs of SERPIN B3 or B4 in staurosporine-induced apoptosis of THP-1 cells. Anti-apoptotic characteristics of THP-1 cells after infection with $T.$ $gondii$ disappeared when SERPIN B3/B4 were knock-downed with gene specific si-RNAs transfected into THP-1 cells as detected by the cleaved caspase 3, poly-ADP ribose polymerase and DNA fragmentation. This anti-apoptotic effect was confirmed in SERPIN B3/B4 overexpressed HeLa cells. We also investigated whether inhibition of STAT6 affects the function of SERPIN B3/B4, and vice versa. Inhibition of SERPIN B3/B4 did not influence STAT6 expression but SERPIN B3/B4 expression was inhibited by STAT6 si-RNA transfection, which confirmed that SERPIN B3/B4 was induced under the control of STAT6 activation. These results suggest that $T.$ $gondii$ induces SERPIN B3/B4 expression via STAT6 activation to inhibit the apoptosis of infected THP-1 cells for longer survival of the intracellular parasites themselves.

Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis

  • Sun, Xiongshan;Zhao, Weiwei;Wang, Qiang;Zhao, Jiaqi;Yang, Dachun;Yang, Yongjian
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.244-249
    • /
    • 2022
  • Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenin-dependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.

Gene Expression Profiling by RNA Sequencing in Mature/Immature Oocytes of Chicken (닭의 성숙/미성숙란에서 RNA Sequencing을 이용한 유전자 발현 양상 고찰)

  • Kang, Kyung-Soo;Jang, Hyun-Jun;Park, Mi Na;Choi, Jung-Woo;Chung, Won-Hyong;Heo, Kang-Nyeong;Choe, Chang-Yong;Kim, Young-Joo;Lee, Si-Woo;Cho, Eun-Seok;Kim, Namshin;Kim, Tae-Hun;Han, Jae-Yong;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.287-296
    • /
    • 2014
  • Chicken eggs undergo various physiological changes during egg maturation. To study genes associated with the egg maturation in pre-ovulation (immature) and post-ovulation (mature), we compared gene expression patterns between in the immature egg and mature egg using RNA sequencing data. Mature and immature eggs were obtained from a Heuksaek Jaerae-jong of Korean native chicken. Total RNAs obtained from the eggs were sequenced by Illumina HiSeq 2000 platform, and the generated sequence reads were mapped to Galgal4 reference sequence assembly using Tuxedo Protocol. From the comparison of the RNA sequencing data, 315 genes were differentially expressed between mature and immature eggs, and 46 genes were only detected in immature egg. Further gene ontology (GO) analysis was performed for the differentially expressed genes using DAVID, showing that 29 and 28 GO terms were independently clustered from mature and immature, respectively. From those clustered GO terms, genes related to germ cell development, sex differentiation and defense response to bacterium were mainly expressed in the immature egg, while genes related to regulation of apoptosis, steroid metabolic process and lipid homeostasis were mainly detected in the mature egg. Our results could contribute to understand egg maturation before and after ovulation, and develop genetic markers for improving egg quality and productivity.

Effect of Atrazine, Perfluorooctanoic Acid and Zearalenone on IFNγ, TNFα, and IL-5 mRNA Expression in Jurkat Cells

  • Lee, Sung-Woo;Son, Hwa-Young;Yoon, Won-Kee;Jung, Ju-Young;Park, Bae-Keun;Cho, Eun-Sang;Park, Sang-Joon;Kim, Tae-Hwan;Ryu, Si-Yun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.286-293
    • /
    • 2010
  • Cytokine production is a sensitive indicator for monitoring perturbations of the immune system by xenobiotics in animals and humans. In the present study, we evaluated the changes in $IFN{\gamma}$, IL-5 and $TNF{\alpha}$ mRNA expression after atrazine (ATZ), perfluorooctanoic acid (PFOA) or zearalenone (ZEA) exposure in Jurkat cells. The IC50 (concentration for a 50% inhibition of cell proliferation) of PFOA and ZEA after 3 days culture were $226.6\;{\mu}M$ and $52.6\;{\mu}M$, respectively. The effects of ATZ on cytokine expression followed in increasing order of $IFN{\gamma}$>IL-5>$TNF{\alpha}$ at $3\;{\mu}M$ and at the lower concentrations the degree of effects on three cytokines were less clear between the cytokines when compared to control level. PFOA had marked increasing effect in order of $IFN{\gamma}$>$TNF{\alpha}$>IL-5 mRNA expression at IC50, and these patterns were continued at the lower concentrations, IC50/2 and IC50/4. ZEA caused the overexpression of cytokine mRNAs in order of IL-5>$IFN{\gamma}$>$TNF{\alpha}$ at both IC50 and IC50/2, and at IC50/4 the overexpression order was IL-5>$TNF{\alpha}$. On other hand, $IFN{\gamma}$ was less distinct compared to the control. These data indicate that ATZ, PFOA and ZEA caused the overtranscription of $IFN{\gamma}$, IL-5 and $TNF{\alpha}$ mRNA, and the overproduction of these cytokines may eventually lead to immune disorders.