• Title/Summary/Keyword: SiOx

Search Result 180, Processing Time 0.033 seconds

(Various Electionic system Applications by Using Silicon-based Thin Films) (실리콘계 박막을 이용한 다양한 전자시스템 응용)

  • 이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.186.2-189
    • /
    • 2001
  • 요실리콘을 기반으로 하는 박막은 반도체 재료로 Si, Si:Ge, SiC등이 사용되고있으며, 절연박막재료로 SiN, SiOxNy, SiOx 등이 있다. 이들 재료는 국내 반도체 산업의 핵심위치에 있는 물질이다. 한국 산업의 근간이라 할 수 있는 메모리분야에 적용될 뿐만 아니라 TFT-LCD, 태양전지, 각종 센서, X-ray 사진 촬영기 개발에도 응용되고 있다. 본 논문에서는 Silicon-based 박막의 제조기법과 그에 따른 다양한 실리콘 박막 실리콘 트랜지스터를 이용한 능동형 액정과 유기발광 화소제어 활용, 센서 응용 부분에서 태양전지, X-ray 촬영기활용 분야에서 기술현황 시장분석을 통해 차세대 연구개발의 방향을 제시하고자 한다. 현재 국내에서 실리콘 박막의 가장 큰 응용 분야는 메모리 소자의 평판디스플레이의 TFT-LCD 시장이다. 그러나 실리콘 박막으로 가능한 응용분야는 아직 산업계에서 열매를 맺지 못한 분야가 더 많고 실제로 적용할 수 있는 분야의 다양함을 본 논문을 통해 소개한다.

  • PDF

Oxygen Barrier Coating with Carbon Interlayer on Polypropylene

  • Kim, Seong-Jin;Song, Eun-Gyeong;Jo, Gyeong-Sik;Yun, Tae-Gyeong;Mun, Myeong-Un;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.210-210
    • /
    • 2012
  • Gas barrier coating from dense thin film deposition has been one of the important applications such as food-packaging and organic display. Especially for food-packaging, plastic container has been widely used due to its low price and high through-put in mass production. However, the plastic container with low surface energy like polypropylene (PP) has been limited to apply gas barrier coating. That is because a gas barrier coating could not adhere to PP due to its too low surface energy and high porosity of PP. In this research, we applied carbon coating consisting of Si and O as an interlayer between silicon oxide (SiOx) and PP. A carbon layer was found to provide better adhesion, which was experimentally proved by oxygen transmission rate (OTR) and SEM images. However, we also found that there is a limitation in the maximum thickness of a carbon layer and SiOx film due to their high stress level. For this conflict, we obtain the optimal thickness of a carbon layer and SiOx film showing optimal gas barrier property.

  • PDF

Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process (열처리 공정을 이용한 Si-doped β-Ga2O3 박막의 전기적 특성의 이해)

  • Lee, Gyeongryul;Park, Ryubin;Chung, Roy Byung Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.19-24
    • /
    • 2020
  • In this work, the electrical property of Si-doped β-Ga2O3 was investigated via a post-growth annealing process. The Ga2O3 samples were annealed under air (O-rich) or N2 (O-deficient) ambient at 800~1,200℃ for 30 mins. There was no correlation between the crystalline quality and the electrical conductivity of the films within the experimental conditions explored in this work. However, it was observed the air ambient led to severe degradation of the film's electrical conductivity while N2-annealed samples exhibited improvement in both the carrier concentration and Hall mobility measured at room temperature. Interestingly, the x-ray photoemission spectroscopy (XPS) revealed that both annealing conditions resulted in higher concentration of oxygen vacancy (VO). Although it was a slight increase for the air-annealed sample, high resistivity of the film strongly suggests that VO cannot be a shallow donor in β-Ga2O3. Therefore, the enhancement of the electrical conductivity of N2-annealed samples must be originated from something other than VO. One possibility is the activation of Si. The XPS analysis of N2-annealed samples showed increasing relative peak area of Si 2p associated with SiOx with increasing annealing temperature from 800 to 1,200℃. However, it was unclear whether or not this SiOx was responsible for the improvement as the electrical conductivity quickly degraded above 1,000℃ even under N2 ambient. Furthermore, XPS suggested the concentration of Si actually increased near the surface as opposed to the shift of the binding energy of Si from its initial chemical state to SiOx state. This study illustrates the electrical changes induced by a post-growth thermal annealing process can be utilized to probe the chemical and electrical states of vacancies and dopants for better understanding of the electrical property of Si-doped β-Ga2O3.

Fabrication of TaOx Thin Film on Si-Substrate by Photo-CVD Method (광화학기상성장법에 의한 Si 기판상에서의 TaO$_{x}$ 박막 제작에 관한 연구)

  • 한봉명;김수용;김경식
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.3
    • /
    • pp.126-132
    • /
    • 1992
  • Recent VLSI requires materials with high dielectric constant in order to reduce their storage capacitor areas. Thin TaOx film was formed from Ta(OCH3)5 by photo-CVD method at a low temperature. The result shows that the film obtained by photo-CVD method is this study has good step coverage, high dielectric constant (20-25) and low leakage current. The high strong peaks from Ta(4f), Ta(4d), and O(ls) levels were observed by XPS analysis. From the diffraction pattern and TEM prcture analysis, the TaOx thin film was observed to be amorphous. This kind of the deposition method could be considered to be a very promising method applied to VLSI.

  • PDF

The Effect of $N_2O$ treatment and Cap Oxide in the PECVD $SiO_xN_y$ Process for Anti-reflective Coating (ARC를 위한 PECVD $SiO_xN_y$ 공정에서 $N_2O$ 처리 및 cap 산화막의 영향)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chung, Hun-Sang;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.39-42
    • /
    • 2000
  • As gate dimensions continue to shrink below $0.2{\mu}m$, improving CD (Critical Dimension) control has become a major challenge during CMOS process development. Anti-Reflective Coatings are widely used to overcome high substrate reflectivity at Deep UV wavelengths by canceling out these reflections. In this study, we have investigated Batchtype system for PECVO SiOxNy as Anti-Reflective Coatings. The Singletype system was baseline and Batchtype system was new process. The test structure of Singletype is SiON $250{\AA}$ + Cap Oxide $50{\AA}$ and Batchtype is SiON $250{\AA}$ + Cap Oxide $50{\AA}$ or N2O plasma treatment. Inorganic chemical vapor deposition SiOxNy layer has been qualified for bottom ARC on Poly+WSix layer, But, this test was practiced on the actual device structure of TiN/Al-Cu/TiN/Ti stacks. A former day, in Batchtype chamber thin oxide thickness control was difficult. In this test, Batchtype system is consist of six deposition station, and demanded 6th station plasma treatment kits for N2O treatment or Cap Oxide after SiON $250{\AA}$. Good reflectivity can be obtained by Cap Oxide rather than N2O plasma treatment and both system of PECVD SiOxNy ARC have good electrical properties.

  • PDF

Effect of the Nitridation Process on the Characteristics of $SiO_2$ Films Thermally Nitrided by the Hot-Wall Process and the Cold-Wall Process (Hot-Wall 및 Cold-Wall 공정이$SiO_2$ 열적질화막의 특성에 미치는 영향)

  • 이용수;조범무;이용현;서병기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1649-1655
    • /
    • 1988
  • Thermally growon SiO2 films were thermally nitrided in a hot-wall furnace and in a RF-heated cold-wall reactor and their characteristics were investigated by the AES and the C-V dmeasurements. The Auger depth profile show that 200\ulcornerSiO2 film nitrided at 1200\ulcorner, for 2hrs by the hot-wall process has a nitrogen-rich layer near the SiOxNy-Si interface. However the nitrogen-ri h layer is not observed in the case of cold-wall process. The maximum flat-band voltage for the SiO2 films nitrided by the hot-wall process is higher than by the cold-wall process, and the peak value of flat-band voltage for the hot-wall process appears the longer nitridation time than that for the cold-wall process. The SiOxNy-Si interface shift toward the Si substrate for the case of the hot-wall process is larger than that for the cold-wall process.

  • PDF

Effect of compliance current on resistive switching characteristics of solution-processed HfOx-based resistive switching RAM (ReRAM)

  • Jeong, Ha-Dong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.255-255
    • /
    • 2016
  • Resistive random access memory (ReRAM)는 낮은 동작 전압, 빠른 동작 속도, 고집적화 등의 장점으로 인해 차세대 비휘발성 메모리 소자로써 많은 관심을 받고 있다. 최근에 ReRAM 절연막으로 NiOx, TiOx, AlOx TaOx, HfOx와 같은 binary metal oxide 물질들을 적용하는 연구가 활발히 진행되고 있다. 특히, HfOx는 안정적인 동작 특성을 나타낸다는 점에서 ReRAM 절연막 물질로 적합하다고 보고되고 있다. ReRAM 절연막을 형성할 때, 물리 기상 증착 방법 (PVD)이나 화학 기상 증착법 (CVD)과 같은 방법이 많이 이용된다. 이러한 증착 방법들은 고품질의 박막을 형성시킬 수 있는 장점이 있다. 하지만, 높은 온도에서의 공정과 고가의 진공 장비가 이용되기 때문에 경제적인 문제가 있으며, 기판 또는 금속에 플라즈마 손상으로 인한 문제가 발생할 수 있다. 따라서 이러한 문제점들을 개선하기 위해 용액 공정이 많은 관심을 받고 있다. 용액 공정은 공정과정이 간단할 뿐만 아니라 소자의 대면적화가 가능하고 공정온도가 낮으며 고가의 진공장비가 필요하지 않은 장점을 가진다. 따라서 본 연구에서는, 용액공정을 이용하여 HfOx 기반의 ReRAM 제작하였고 $25^{\circ}C$$85^{\circ}C$에서 ReRAM의 동작특성에 미치는 compliance current의 영향을 평가하였다. 실험 방법으로는, hafnium chloride (0.1 M)를 2-methoxyethanol에 충분히 용해시켜서 precursor를 제작하였다. 이후, p-type Si 기판 위에 습식산화를 통하여 300 nm 두께의 SiO2 절연층을 성장시킨 후, 하부전극을 형성하기 위해 electron beam evaporation을 이용하여 10/100 nm 두께의 Ti/Pt 전극을 증착하였다. 순차적으로, 제작된 산화물 precursor를 이용하여 Pt 위에 spin coating 방법으로 1000 rpm 10 초, 6000 rpm 30초의 조건으로 두께 35 nm의 HfOx 막을 증착하였다. 최종적으로, solvent 및 불순물을 제거하기 위해 $180^{\circ}C$의 온도에서 10 분 동안 열처리를 진행하였으며, 상부 전극을 형성하기 위해 electron beam evaporation을 이용하여 Ti와 Al을 각각 50 nm, 100 nm의 두께로 증착하였다. ReRAM 동작에서 compliance current가 미치는 영향을 평가하기 위하여 compliance current를 10mA에서 1mA까지 변화시키면서 측정한 결과, $25^{\circ}C$에서는 compliance current의 크기와 상관없이 일정한 메모리 윈도우와 우수한 endurance 특성을 얻는 것을 확인하였다. 한편, $85^{\circ}C$의 고온에서 측정한 경우에는 1mA의 compliance current를 적용하였을 때, $25^{\circ}C$에서 측정된 메모리 윈도우 크기를 비슷하게 유지하면서 더 우수한 endurance 특성을 얻는 것을 확인하였다. 결과적으로, 용액공정 방법으로 제작된 ReRAM을 측정하는데 있어서 compliance current를 줄이면 보다 우수한 endurance 특성을 얻을 수 있으며, ReRAM 소자의 전력소비감소에 효과적이라고 기대된다.

  • PDF

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.

The Characteristics of Poly(acrylamide)-SiOx Nanoparticles Prepared by Graft-polymerizaton (그라프트 중합에 의해 만들어진 폴리아크릴아마이드-실리카 나노 입자의 특성)

  • Min, Jun Ho;Min, Seong Kee
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • Methacryloxypropyltrimethoxysilane (MPTMS) was used for the surface modification of silica nanoparticles in the toluene dispersion system for 8 h (MPSN). Then, methacryloxypropyl-modified silica nanoparticles were successfully prepared by solutioun polymerization in the ethanol solution at $60^{\circ}C$ for 14 h with adding AIBN initiator. The modification of ultra-fine particles (SiOx-PAA nanospheres) was investigated via EA, XPS, FTIR, TGA, SEM and TEM. The mean diameter of the bare silica nanoparticles, MPSN and SiOx-PAA monodisperse nanoparticles was about 25, 30 and 35 nm, respectively.

Plasma Enhanced Thermal Nitridation of $SiO_2$ for VLSI (VLSI를 위한 플라즈마 열적 질산화막의 형성)

  • 이재성;이용현;최시영;이덕동
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1699-1705
    • /
    • 1989
  • Nitridation of about 300\ulcornerSiO2 filmss thermally grown on Si was performed in NH3 plasm ambient (0.2-2 torr) at 900\ulcornerC-1100\ulcorner for 15-20 minutes. The peoperties of those films have been investigated by analyzing the AES and the SIMS data, and the results of the I-V and the C-V measurements. At the plasma ambient of less than 1.5 torr pressure, etching of the films have been shown. Above the 1.5 torr pressure, however, SiO2 films were nitrided as SiIxNy. Plasma thermal nitridation of SiO2 by addition of small amount (6%) of CF4 to the NH3 showed higher pile-up N concentration in the surface region of SiOxNy film. The higher the nitridation temperature is and the longer the nitridation time is the larger the dielectric constant is. The plasma thermal nitridation of silicon dioxide on silicon causes the flat-band voltage shift based on the formation of the positive charge. The conduction mechanism for SiOxNy films could be elucidated by Fowler-Nordheim tnneling model. By SIMS analysis, surface of the film nitrided in plasma process has less contamination than that of the film nitrided in open-tube process.

  • PDF