• Title/Summary/Keyword: SiInZnO

Search Result 763, Processing Time 0.043 seconds

Optical properties of the $O_2$ plasma treatment on BZO (ZnO:B) thin films for TCO of a-Si solar cells

  • Yoo, Ha-Jin;Son, Chang-Gil;Cho, Won-Tea;Park, Sang-Gi;Choi, Eun-Ha;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.454-454
    • /
    • 2010
  • In order to achieve a high efficient a-Si solar cell, the TCO (transparent conductive oxide) substrates are required to be a low sheet resistivity, a high transparency, and a textured surface with light trapping effect. Recently, a zinc oxide (ZnO) thin film attracts our attention as new coating material having a good transparent and conductive for TCO of solar cells. In this paper the optical properties of $H_2$ post-treated BZO (boron doped ZnO, ZnO:B) thin film are investigated with $O_2$-plasma treatment. The BZO thin films by MOCVD (Metal Organic Chemical Vapor Deposition) are investigated and the samples of $H_2$ post-treated BZO thin film are tested with $O_2$-plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. We measured the optical properties and surface morphology of BZO thin film with and without $O_2$-plasma treatment. The optical properties such as transmittance, reflectance and haze are measured with integrating sphere and ellipsometer. This result of the BZO thin film with and without $O_2$-plasma treatment is application to the TCO for solar cells.

  • PDF

Characteristics of $ZnGa_2$$O_4$phosphors thin film for FED(Field Emission Display) by RF Magnetron Sputtering (RF Magnetron Sputtering법에 의한 FED용 $ZnGa_2$$O_4$형광체의 특성분석)

  • 한진만;박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.776-780
    • /
    • 2000
  • ZnGa$_2$O$_4$thin films were prepared on Si(100) wafer in terms of RF power, substrate temperatures and Ar/O$_2$flow rate by RF Magnetron Sputtering. Photoluminescence(PL) measurement was employed to observe the emission spectra of ZnGa$_2$O$_4$films. The influences of various deposition parameters on the properties of grown films were studied. The optimum substrate deposition temperature for luminous characteristics was about 50$0^{\circ}C$ in this investigation. PL spectrum of ZnGa$_2$O$_4$ thin films showed broad band luminescence spectrum.

  • PDF

전도성 기판에 도입된 산화아연 나노월의 능동적 성장법과 전자소자

  • Kim, Dong-Chan;Lee, Ju-Ho;Bae, Yeong-Suk;Choe, Won-Cheol;Jo, Hyeong-Gyun;Lee, Jeong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.54-54
    • /
    • 2010
  • This article reports a spontaneous method for controlling the growth mode from vertically arrayed ultra-slim MgZnO nanowires to nanowalls through the Zn random motion of seeds formed by surface phase separation by Mg injection near an evaporation temperature of Zn. The random motion of single crystal MgZnO seeds with relative Zn rich phase played a vital role in the growth of the MgZnO nanowalls. The seeds were networked with increasing Zn flux compared with Mg flux and closing to the evaporation temperature of Zn on phase separation layers. We achieved fabrication of MgZnO nanowalls on various non- and conducting substrates by this advanced growth method. The MgZnO nanowalls hydrogen sensor showed an improved sensing performance compared to the MgZnO nanowires grown under the similar conditions. Based on the microstructural characterizations, the growth procedure and models for the evolution of the structure transition from MgZnO nanowires to nanowalls on the Si substrates are proposed for phased growth times.

  • PDF

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Zn$_2SiO_4$ : Mn Phosphor Particles Prepared by Spray Pyrolysis Process

  • Kang, Yun-Chan;Park, Hee-Dong;Lim, Mi-Ae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.57-62
    • /
    • 2001
  • Green-emitting $Zn_2SiO_4$:Mn phosphor particles having a spherical shape and high luminescence intensities under VUV were prepared by spray pyrolysis process under severe preparation conditions. The type of precursor solutions affected the morphology and luminescence characteristics of the prepared particles. The particles prepared from the clear solution by laboratory-scale process had spherical shape and dense morphology, while the particles prepared from the severe preparation conditions had rough surface and collapsed structure. However, the particles prepared from the colloidal solution utilizing fumed silica were spherical in shape and filled morphology at the severe preparation conditions of high flow rate of carrier gas, high concentration of solution, and large reactor size. The prepared $Zn_2SiO_4$:Mn phosphor particles with complete spherical shape had higher photoluminescence intensity than that of the commercial product prepared by solid state reaction.

  • PDF

Effect of Interfacial Reaction between Mn-Zn Ferrite Single Crystal and Bonding Glass on Magnetic Properties (Mn-Zn 페라이트 단결정과 접합유리와의 계면반응이 자기적특성에 미치는 영향)

  • 제해준;김영환;김병국;박재관
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.226-231
    • /
    • 2001
  • The effect of interface reaction between Mn-Zn ferrite single crystal and 61 SiO$_2$-23Pbo-6ZnO-8Na$_2$O-2K$_2$O (mol%) glass on the magnetic properties of the ferrite was investigated. After the reaction, the hump of Zn concentration appeared at the ferrite adjacent to the interface. The initial permeability of the ferrite bonded with the glass at 700 $^{\circ}C$ was 1766 at 100 KHz and reduced to 907 after reaction at 1000$^{\circ}C$. The permeability degradation with increasing reaction temperature was considered to be attributed not only to the sixe diminution of the ferrite due to the its dissolution into the glass but also to the residual stress due to the difference in expansion coefficient between the ferrite and the diffusion layer-the region of the hump of Zn concentration-adjacent to the interface.

  • PDF

Synthesis and Formation Mechanism of ZnO Nanotubes via an Electrochemical Method (전기화학적 방법에 의한 산화아연 나노튜브의 합성과 형성 기구)

  • Moon, Jin Young;Kim, Hyunghoon;Lee, Ho Seong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.400-405
    • /
    • 2011
  • ZnO nanotube arrays were synthesized by a two-step process: electrodeposition and selective dissolution. In the first step, ZnO nanorod arrays were grown on an Au/Si substrate by using a homemade electrodeposition system. ZnO nanorod arrays were then selectively dissolved in an etching solution composed of 0.125 M NaOH, resulting in hollow ZnO nanotube arrays. It is suggested that the formation mechanism of the ZnO nanotube arrays might be attributed to the preferred surface adsorption of hydroxide ion ($OH^{-1}$) on a positive polar surface followed by selective dissolution of the metastable Zn-terminated ZnO (0001) polar surface caused by the difference in the surface energy per unit area between the ZnO nanorod and nanotube.

A optimum studies of TCO/p-layer for high Efficiency in Amorphous Silicon Solar cell (비정질 실리콘 태양전지 고효율화를 위한 전면투명전도막/p 최적연구)

  • Lee, Ji-Eun;Lee, Jeong-Chul;Oh, Byung-Seng;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.275-277
    • /
    • 2007
  • 유리를 기판으로 하는 superstrate pin 비정질 태양전지에서 전면투명전도막(TCO)과 p-layer의 계면이 태양전지의 효율을 내는데 가장 큰 기여를 한다. 전면투명전도막(TCO)으로 현재 일반적으로 사용되는 ZnO:Al는 $SnO_2:F$ 보다 전기,광학적으로 우수하고, 안개율(Haze)높으며, 수소 플라즈마에서의 안정성이 높은 특정을 갖고 있다. 그래서 박막 태양전지 특성향상에 매우 유리하나, 태양전지로 제조했을 때, $SnO_2:F$보다 충진율(Fill factor:F.F)과 V_{\infty}$ 가 감소한다는 단점을 가지고 있다. 본 실험실에서는 $SnO_2:F$의 F.F가 72%이 나온 반면 ZnO:Al의 F.F은 68%에 그쳤다. 이들 원인을 분석하기 위해 TCO/p-layer의 전기적 특성을 알아 본 결과, $SnO_2:F$보다 ZnO:Al의 직렬저항이 높게 측정되었다. 이러한 결과를 바탕으로 p-layer 에 R={$H_2/SiH_4$}=25로 변화, p ${\mu$}c$-Si:H/p a-SiC:H 로 p-layer 이중 증착, p-layer의 boron doping 농도를 증가시키는 실험을 하였다. 직렬저항이 가장 낮았던 p ${\mu$}c$-Si:H/p a-SiC:H 로 p-layer 이중 증착에서 Voc는 0.95V F.F는 70% 이상이 나왔다. 이들 각 p층의 $E_a$(Activation Energy)를 구해본 결과, ${\mu$}c$-Si:H의 Ea 가 가장 낮은 것을 관찰 할 수 있었다.

  • PDF

박막트랜지스터 효율 향상을 위한 ZnO 박막의 특성에 대한 연구

  • Park, Yong-Seop;Choe, Eun-Chang;Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.63-63
    • /
    • 2009
  • Many researchers have been studied as active and transparent electrode using ZnO (Zinc oxide) inorganic semiconductor material due to their good properties such as wide band-gap and high electrical properties compared with amorphous-Si. In this study, we fabricated ZnO films by the RF magnetron sputtering method at a low temperature for a channel layer in thin-film transistor (TFT) and investigated the characteristics of sputtered ZnO films. Also, the electrical properties of TFT using ZnO channel layer such as field effect mobility(${\mu}$), threshold voltage ($V_{th}$), and $I_{on/off}$ ratio are investigated for the application of the display and electronic devices.

  • PDF