• 제목/요약/키워드: SiHa cells

검색결과 110건 처리시간 0.029초

NRROS Negatively Regulates Osteoclast Differentiation by Inhibiting RANKL-Mediated NF-κB and Reactive Oxygen Species Pathways

  • Kim, Jung Ha;Kim, Kabsun;Kim, Inyoung;Seong, Semun;Kim, Nacksung
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.904-910
    • /
    • 2015
  • Negative regulator of reactive oxygen species (NRROS) is known to repress ROS generation in phagocytes. In this study, we examined the roles of NRROS in both osteoclasts and osteoblasts. Our results demonstrate that NRROS negatively regulates the differentiation of osteoclasts, but not osteoblasts. Further, overexpression of NRROS in osteoclast precursor cells attenuates RANKL-induced osteoclast differentiation. Conversely, osteoclast differentiation is enhanced upon siRNA-mediated knock-down of NRROS. Additionally, NRROS attenuates RANKL-induced $NF-{\kappa}B$ activation, as well as degradation of the NOX1 and NOX2 proteins, which are required for ROS generation. Based on our observations, we present NRROS as a novel negative regulator of RANKL-induced osteoclastogenesis.

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

Cytotoxic Effects of Phytophenolics from Caesalpinia mimosoides Lamk on Cervical Carcinoma Cell Lines through an Apoptotic Pathway

  • Palasap, Adisak;Limpaiboon, Temduang;Boonsiri, Patcharee;Thapphasaraphong, Suthasinee;Daduang, Sakda;Suwannalert, Prasit;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.449-454
    • /
    • 2014
  • Background: Extracts of Caesalpinia mimosoides Lamk has been reported to possess anticancer effects, but the active ingredients and the anti-cancer mechanisms are still unknown. Materials and Methods: The effects of a C mimosoides Lamk extract on cell proliferation and apoptosis induction in human cervical carcinoma cell lines, namely HeLa, SiHa, and C33A, as well as in normal Vero cells, were investigated. Results: Treatment with 5 active fractions (F17-F21) of C mimosoides Lamk methanol extracts inhibited cell viability in a dose- and time-dependent manner. Neutral red assays indicated that treatment with F21 significantly decreased the viability of all cervical cancer cell lines compared to F21-treated normal cells. In addition, HPLC analysis revealed that F21 contained multiple phenolic compounds, namely gallic acid, caffeine, vanillic acid, ferulic acid and resveratrol. F21 had the lowest IC50 and, therefore, a much higher cytotoxicity than F20, F17, F19, and F18 by 20-, 25-, 46- and 47- fold, respectively. Analysis of activation of the apoptosis pathway using a caspase 3/7 activity assay revealed that F21 treatment resulted in a considerable increase in caspase activation in all cancer cell lines tested. At the same concentration of F21, HeLa cells had the highest caspase activity (6.5-fold) compared to the control. Conclusion: C mimosoides Lamk may be of value as an alternative therapeutic agent, especially in combination with other compounds offering possible of synergy of action. Moreover, HPV- and non-HPV-related cervical cancer cells may differ in their responses to treatment regimens.

Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice

  • Yang, Hyun-Jung;Joo, Yu-Young;Hong, Bo-Hyun;Ha, Sung-Ji;Woo, Ran-Sook;Lee, Sang-Hyung;Suh, Yoo-Hun;Kim, Hye-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.229-233
    • /
    • 2010
  • Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.

옻 추출물의 세포독성 및 자궁 경부암 바이러스 암 유발인자 E6 와 E7의 작용에 미치는 효과 (The Effects of Rhus Extracts on The Cytotoxicity on Cancer Cells and E6 and E7 Oncogenes of Human Papillomavirus Type 16)

  • 조영식;정옥;조정원;이경애;심정현;김광수;이홍수;성기승;윤도영
    • 한국식품과학회지
    • /
    • 제32권6호
    • /
    • pp.1389-1395
    • /
    • 2000
  • 자궁 경부암은 매년 약 50만명 정도씩 사망하는 여성의 치명적인 사망원인의 하나이다. 인두유종 바이러스(HPV) 16형 및 18형과 자궁 경부암과의 긴밀한 관련성은 잘 알려져 있다. 옻 추출물 Rhus가 HPV 16형의 E6, E7 발암 유전자를 억제하는지 여부를 측정하였다. 이 Rhus는 자궁 경부암 세포주(C-33A, SiHa, Caski)와 HaCaT keratinocytes의 분열은 농도 의존적으로 억제하였다. In vitro binding assay와 효소면역측정법에 의하면 Rhus가 암 억제인자인 p53과 결합하여 분해 시키는데 필수적인 E6와 E6AP와의 결합을 억제할 뿐더러 암 억제인자 Rb와 E7과의 결합을 억제하였다. RT-PCR에 의하면 Rhus에 의해 E6 mRNA의 level이 감소하였으나 E7 mRNA는 변하지 않았음을 보여주었다. 이들 결과에 의하면 Rhus가 HPV 16형의 E6와 E7의 발암성을 억제함을 보여 주므로 HPV에 의해 유도된 자궁 경부암의 치료에 유효할 것으로 사료되어 좀 더 자세한 in vitro실험 등이 요구된다.

  • PDF

RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구 (Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering)

  • 하린;김신호;이현주;박영빈;이정철;배종성;김양도
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Up-regulation of Heme Oxygenase-1 by Korean Red Ginseng Water Extract as a Cytoprotective Effect in Human Endothelial Cells

  • Yang, Ha-Na;Lee, Seung-Eun;Jeong, Seong-Il;Park, Cheung-Seog;Jin, Young-Ho;Park, Yong-Seek
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.352-359
    • /
    • 2011
  • Korean red ginseng (KRG) is used worldwide as a popular traditional herbal medicine. KRG has shown beneficial effects on cardiovascular diseases, such as atherosclerosis, diabetes, and hypertension. Up-regulation of a cytoprotective protein, heme oxygenase (HO)-1, is considered to augment the cellular defense against various agents that may induce cytotoxic injury. In the present study, we demonstrate that KRG water extract induces HO-1 expression in human umbilical vein endothelial cells (HUVECs) and possible involvement of the anti-oxidant transcription factor nuclear factor-eythroid 2-related factor 2 (Nrf2). KRG-induced HO-1 expression was examined by western blots, reverse transcriptase polymerase chain reaction and immunofluorescence staining. Specific silencing of Nrf2 genes with Nrf2-siRNA in HUVECs abolished HO-1 expression. In addition, the HO inhibitor zinc protoporphyrin blunted the preventive effect of KRG on $H_2O_2$-induced cell death, as demonstrated by terminal transferase dUTP nick end labeling assay. Taken together, these results suggest that KRG may exert a vasculoprotective effect through Nrf2-mediated HO-1 induction in human endothelial cell by inhibition of cell death.

Tyrosinase Activity and Melanogenic Effects of Rhododendron schlippenbachii Extract In vivo and In vitro

  • HA, Si Young;JUNG, Ji Young;KANG, Hee Young;KIM, Tae-Heung;YANG, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.166-180
    • /
    • 2020
  • Rhododendron schlippenbachii have been used as a medicine because of their various biological activities. In this study, R. schlippenbachii ethanol extract was evaluated for the treatment of vitiligo. The R. schlippenbachii ethanol extract did not show any cell cytotoxicity. The effect on mushroom tyrosinase and cellular tyrosinase activities were further assessed. In addition, the determination of melanin content in melanocytes was measured using both the B16 melanoma cells and C57BL/6J Ler-vit/vit mice. Finally, the existence of quercetin in R. schlippenbachii was confirmed by qualitative analysis using HPLC. The results clearly demonstrated the R. schlippenbachii extract enhanced melanogenesis and also increased tyrosinase activity in cultured melanoma cells and C57BL/6J Ler-vit/vit mice. In addition, treatment with R. schlippenbachii extract led to a higher content of melanin and eumelanin in C57BL/6J Ler-vit/vit mice hair than in control (untreated) mice, which demonstrated the therapeutic effect of hair-graying associated with vitiligo. Finally, we confirmed a notable increase in melanocytes in the skin of C57BL/6J Ler-vit/vit mice treated with R. schlippenbachii extract compared with the control. Extracts of R. schlippenbachii was shown to be potent tyrosinase and melanin synthesis activator in B16 melanoma cells. The R. schlippenbachii extract have significantly higher melanin content than the untreated control in C57BL/6J Ler-vit/vit mice hair. The results suggest that R. schlippenbachii extract might be considered as an alternative treatment for improvement of vitiligo.

Effects of cp-Ti Surface Roughness and Directionality on Initial Cell Attachment Behaviors

  • Shin, Dong-Hoon;Chun, Sungsu;Ahn, Myun-Whan;Song, In-Hwan;Kim, Sukyoung
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.338-343
    • /
    • 2012
  • The early osseointegration of titanium (Ti) dental implants is related to the initial cell morphology. The morphology of the cells (mesenchymal stem cells, MSC) was observed on three different Ti disc surfaces, which were mechanically treated by polishing, blasting, and scratching. A non-directional surface (isotropic texture) was obtained by the blasting of HA grits on cp-Ti discs, and a unidirectional surface (anisotropic texture) was obtained by the scratching of SiC papers. The cell attachment and arrangement in the initial periods were quite similar, but those in the later periods were significantly affected by the texture of the cp-Ti discs. After 1 week, the blasted Ti discs showed non-directional arrangement or spreading of the cells, whereas the scratched cp-Ti discs showed unidirectional properties parallel to the direction of the scratched grooves on the surface. The surface roughness of the cp-Ti discs significantly affects cell proliferation. Cell proliferation on the blasted and scratched surfaces was about 60% and 40% higher compared to the control result (polishing group) after 1 week (P<0.05). Cell proliferation on the blasted and scratched surfaces after 1 week was slightly enhanced with increasing surface roughness. It is believed that the direction of cell attachment and arrangement is closely related to the surface texture of the substrate surfaces, but cell proliferation after a relatively long period of time is directly enhanced by the surface roughness, not by the surface texture.

Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness

  • Kim, Eun-Ha;Kwon, Hyeok-Il;Park, Su-Jin;Kim, Young-Il;Si, Young-Jae;Lee, In-Won;Kim, Se mi;Kim, Soo-In;Ahn, Dong-Ho;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.997-1006
    • /
    • 2018
  • As shown during the 2009 pandemic H1N1 (A(H1N1)pdm09) outbreak, egg-based influenza vaccine production technology is insufficient to meet global demands during an influenza pandemic. Therefore, there is a need to adapt cell culture-derived vaccine technology using suspended cell lines for more rapid and larger-scale vaccine production. In this study, we attempted to generate a high-growth influenza vaccine strain in MDCK cells using an A/Puerto/8/1934 (H1N1) vaccine seed strain. Following 48 serial passages with four rounds of virus plaque purification in MDCK cells, we were able to select several MDCK-adapted plaques that could grow over $10^8PFU/ml$. Genetic characterization revealed that these viruses mainly had amino acid substitutions in internal genes and exhibited higher polymerase activities. By using a series of Rg viruses, we demonstrated the essential residues of each gene and identified a set of high-growth strains in MDCK cells ($PB1_{D153N}$, $M1_{A137T}$, and $NS1_{N176S}$). In addition, we confirmed that in the context of the high-growth A/PR/8/34 backbone, A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and A/environment/Korea/deltaW150/2006 (H5N1) also showed significantly enhanced growth properties (more than $10^7PFU/ml$) in both attached- and suspended-MDCK cells compared with each representative virus and the original PR8 vaccine strain. Taken together, this study demonstrates the feasibility of a cell culture-derived approach to produce seed viruses for influenza vaccines that are cheap and can be grown promptly and vigorously as a substitute for egg-based vaccines. Thus, our results suggest that MDCK cell-based vaccine production is a feasible option for producing large-scale vaccines in case of pandemic outbreaks.