References
- Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., and Wagner, E.F. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science (New York, N.Y.) 266, 443-448. https://doi.org/10.1126/science.7939685
- He, Y., Staser, K., Rhodes, S.D., Liu, Y., Wu, X., Park, S.J., Yuan, J., Yang, X., Li, X., Jiang, L., et al. (2011). Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PloS one 6, e24780. https://doi.org/10.1371/journal.pone.0024780
- Johnson, R.S., Spiegelman, B.M., and Papaioannou, V. (1992). Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71, 577-586. https://doi.org/10.1016/0092-8674(92)90592-Z
- Kamiya, N. (2012). The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr. Mol. Pharmacol. 5, 153-163. https://doi.org/10.2174/1874467211205020153
- Kim, J.H., and Kim, N. (2014). Regulation of NFATc1 in Osteoclast Differentiation. J. Bone Metabol. 21, 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
- Kim, K., Kim, J.H., Lee, J., Jin, H.M., Lee, S.H., Fisher, D.E., Kook, H., Kim, K.K., Choi, Y., and Kim, N. (2005). Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activationinduced cytokine-mediated osteoclastogenesis. J. Biol. Chem. 280, 35209-35216. https://doi.org/10.1074/jbc.M505815200
- Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively regulates RANKLmediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
- Kim, K., Lee, S.H., Ha Kim, J., Choi, Y., and Kim, N. (2008). NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
- Kim, K., Kim, J.H., Kim, I., Lee, J., Seong, S., Park, Y.W., and Kim, N. (2015). MicroRNA-26a regulates RANKL-induced osteoclast formation. Mol. Cells 38, 75-80.
- Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181-189. https://doi.org/10.1038/nri1312
- Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N., and Lee, S.Y. (2005). A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859. https://doi.org/10.1182/blood-2004-09-3662
- Moon, J.B., Kim, J.H., Kim, K., Youn, B.U., Ko, A., Lee, S.Y., and Kim, N. (2012). Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J. Immunol. 188, 163-169. https://doi.org/10.4049/jimmunol.1101254
- Noubade, R., Wong, K., Ota, N., Rutz, S., Eidenschenk, C., Valdez, P.A., Ding, J., Peng, I., Sebrell, A., Caplazi, P., et al. (2014). NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235-239. https://doi.org/10.1038/nature13152
- Rho, J., Takami, M., and Choi, Y. (2004). Osteoimmunology: interactions of the immune and skeletal systems. Mol. Cells 17, 1-9.
- Sasaki, H., Yamamoto, H., Tominaga, K., Masuda, K., Kawai, T., Teshima-Kondo, S., and Rokutan, K. (2009). NADPH oxidasederived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J. Med. Invest. 56, 33-41. https://doi.org/10.2152/jmi.56.33
- Walsh, M.C., Kim, N., Kadono, Y., Rho, J., Lee, S.Y., Lorenzo, J., and Choi, Y. (2006). Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I.R., Schwarz, E.M., Takeshita, S., Wagner, E.F., Noda, M., Matsuo, K., et al. (2007). NF-kappaB p50 and p52 regulate receptor activator of NFkappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282, 18245-18253. https://doi.org/10.1074/jbc.M610701200
- Zhou, J., Ye, S., Fujiwara, T., Manolagas, S.C., and Zhao, H. (2013). Steap4 plays a critical role in osteoclastogenesis in vitro by regulating cellular iron/reactive oxygen species (ROS) levels and cAMP response element-binding protein (CREB) activation. J. Biol. Chem. 288, 30064-30074. https://doi.org/10.1074/jbc.M113.478750
Cited by
- NADPH oxidase gp91phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1 vol.6, pp.1, 2016, https://doi.org/10.1038/srep38014
- Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation vol.476, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.05.135
- The Alternative Faces of Macrophage Generate Osteoclasts vol.2016, 2016, https://doi.org/10.1155/2016/9089610
- Oxidative stress in northern elephant seals: Integration of omics approaches with ecological and experimental studies vol.200, 2016, https://doi.org/10.1016/j.cbpa.2016.02.011
- Downregulation of Runx2 by 1,25-Dihydroxyvitamin D3 Induces the Transdifferentiation of Osteoblasts to Adipocytes vol.17, pp.5, 2016, https://doi.org/10.3390/ijms17050770
- Glycyrrhizin Suppresses RANKL-Induced Osteoclastogenesis and Oxidative Stress Through Inhibiting NF-κB and MAPK and Activating AMPK/Nrf2 vol.103, pp.3, 2018, https://doi.org/10.1007/s00223-018-0425-1
- The use of apocynin inhibits osteoclastogenesis vol.43, pp.5, 2019, https://doi.org/10.1002/cbin.11110
- Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases vol.20, pp.14, 2015, https://doi.org/10.3390/ijms20143576
- Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty vol.108, pp.5, 2015, https://doi.org/10.1002/jbm.b.34546
- Sestrin2 Regulates Osteoclastogenesis via the p62-TRAF6 Interaction vol.9, pp.None, 2015, https://doi.org/10.3389/fcell.2021.646803