• Title/Summary/Keyword: SiGe alloy

Search Result 40, Processing Time 0.036 seconds

Determination of Layer Thickness of A/B Type Multilayer Films in SIMS Depth Profiling Analysis

  • Hwang, Hyun-Hye;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.231-231
    • /
    • 2012
  • Correct determination of the interface locations is critical for the calibration of the depth scale and measurement of layer thickness in SIMS depth profiling analysis of multilayer films. However, the interface locations are difficult to determine due to the unwanted distortion from the real ones by the several effects due to sputtering with energetic ions. In this study, the layer thicknesses of Si/Ge and Si/Ti multilayer films were measured by SIMS depth profiling analysis using the oxygen and cesium primary ion beam. The interface locations in the multilayer films could be determined by two methods. The interfaces can be determined by the 50 at% definition where the atomic fractions of the constituent layer elements drop or rise to 50 at% at the interfaces. In this method, the raw depth profiles were converted to compositional depth profiles through the two-step conversion process using the alloy reference relative sensitivity factors (AR-RSF) determined by the alloy reference films with well-known compositions determined by Rutherford backscattering spectroscopy (RBS). The interface locations of the Si/Ge and Si/Ti multilayer films were also determined from the intensities of the interfacial composited ions (SiGe+, SiTi+). The determination of the interface locations from the composited ions was found to be difficult to apply due to the small intensity and the unclear variation at the interfaces.

  • PDF

The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2 (P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1883-1889
    • /
    • 2013
  • Although Fe-Si based alloy has lower figure of merit than Si-Ge alloy applied for space probe, its low cost related to abundant raw material, rather simple processing, high temperature resistance and reliability up to $800^{\circ}C$ made it one of the most promising middle temperature thermoelectric generation materials. The effect of particle size and additive on the thermoelectric properties of p-$FeSi_2$ prepared by a RF inductive furnace was investigated. The electrical conductivity increased slightly with decreasing particle size and hence better grain-to-grain connectivity due to the increase of density. The Seebeck coefficient exhibited the maximum value at about 600~800K and decreased slightly with increasing particle size. This must be due to the amount of residual metallic phase ${\varepsilon}$-FeSi. $Fe_2O_3$ and/or $Fe_3O_4$-doped specimens showed the higher electrical conductivity and the lower Seebeck coefficient due to increase of the metallic phase and Si-vacancy. On the other hand, $SiO_2$-doped specimen showed the higher electrical conductivity and the higher Seebeck coefficients.

Decision of Interface and Depth Scale Calibration of Multilayer Films by SIMS Depth Profiling

  • Hwang, Hye-Hyun;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.274-274
    • /
    • 2012
  • In-depth analysis by secondary ion mass spectrometry (SIMS) is very important for the development of electronic devices using multilayered structures, because the quantity and depth distribution of some elements are critical for the electronic properties. Correct determination of the interface locations is critical for the calibration of the depth scale in SIMS depth profiling analysis of multilayer films. However, the interface locations are distorted from real ones by the several effects due to sputtering with energetic ions. In this study, the determination of interface locations in SIMS depth profiling of multilayer films was investigated by Si/Ge and Ti/Si multilayer systems. The original SIMS depth profiles were converted into compositional depth profiles by the relative sensitivity factors (RSF) derived from the atomic compositions of Si-Ge and Si-Ti alloy reference films determined by Rutherford backscattering spectroscopy. The thicknesses of the Si/Ge and Ti/Si multilayer films measured by SIMS depth profiling with various impact energy ion beam were compared with those measured by TEM. There are two methods to determine the interface locations. The one is the feasibility of 50 atomic % definition in SIMS composition depth profiling. And another one is using a distribution of SiGe and SiTi dimer ions. This study showed that the layer thicknesses measured with low energy oxygen and Cs ion beam and, by extension, with method of 50 atomic % definition were well correlated with the real thicknesses determined by TEM.

  • PDF

Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering

  • Vishwakarma, Avinash;Bathula, Sivaiah;Chauhan, Nagendra S.;Bhardwaj, Ruchi;Gahtori, Bhasker;Srivastava, Avanish K.;Dhar, Ajay
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1540-1545
    • /
    • 2018
  • SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ~ 1.1 at $900^{\circ}C$ in ntype $Si_{80}Ge_{20}$ nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ${\sim}3.4{\times}10^7K/s$, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ~7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ${\sim}2.1Wm^{-1}K^{-1}$, which corresponds to ~50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.

A study on the electron transport coefficients in $GeH_4$ gas ($GeH_4$기체의 전자수송계수에 관한 연구)

  • Ryu, Sun-Mi;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1404_1405
    • /
    • 2009
  • For quantitative understanding of gas discharge phenomena, we should know electron collision cross section. $GeH_4$ is used in many applications with $Si_2H_6$ gas, such as amorphous alloy, a thin film of silicon and solar cell. Therefore, we understand the electron transport characteristics and analysed the electron transport coefficients, the electron drift velocity W, the longitudinal and transverse diffusion coefficient $ND_L$ and $ND_T$, and the ionization coefficient $\alpha$/N in $GeH_4$gas over the E/N range from 0.01 to 1000 Td by two-term approximation of the Boltzmann equation.

  • PDF

Epitaxy of Si and Si1-xGex(001) by ultrahigh vacuum ion-beam sputter deposition

  • Lee, N. E.;Greene, J. E.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • Epitaxial undoped and Sb-doped si films have been grown on Si(001) substrates at temperatures T between 80 and 750$^{\circ}C$ using energetic Si in ultra-high-vacuum Kr+-ion-beam sputter deposition(IBSD). Critical epitaxial thicknesses te, The average thickness of epitaxial layers, in undoped films were found to range from 8nm at Ts=80$^{\circ}C$ to > 1.2 ${\mu}$m at Ts=300$^{\circ}C$ while Sb incorporation probabilities $\sigma$sb varied from unity at Ts 550$^{\circ}C$ to 0.1 at 750$^{\circ}C$. These te and $\sigma$Sb values are approximately one and one-to-three orders of magnitude, respectively, higher than reported results achieved with molecular-beam epitaxy. Plan-view and cross-sectional transmission electron microscopy, high-resolution x-ray diffraction, channeling and axial angular-yield profiles by Rutherford back scattering spectroscopy for epitaxial Si1-x Gex(001) alloy films (0.15$\leq$x$\leq$0.30) demonstrated that the films are of extremely high crystalline quality. critical layer thicknesses hc the film thickness where strain relaxation starts, I these alloys wre found to increase rapidly with decreasing growth temperature. For Si0.70 Ge0.30, hc ranged from 35nm at Ts=550$^{\circ}C$ to 650nm at 350$^{\circ}C$ compared to an equilibrium value of 8nm.

  • PDF

Thermal Stability Improvement of Ni Germanosilicide using Ni-Pd alloy for Nano-scale CMOS Technology (Nano-scale CMOS에 적용하기 위한 Ni-Germanosilicide에서 Ni-Pd 합금을 이용한 Ni-Germanosilicide의 열안정성 향상)

  • Kim, Yong-Jin;Oh, Soon-Young;Agchbayar, Tuya;Yun, Jang-Gn;Lee, Won-Jae;Ji, Hee-Hwan;Han, Kil-Jin;Cho, Yu-Jung;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.31-32
    • /
    • 2005
  • Ge 농도가 30%인 SiGe 위에 Ni-Pd 합금을 이용한 새로운 Ni-Germanosilicide의 방법을 제안하여 열안정성 향상에 대해 연구하였다. 새롭게 제안한 Ni-Pd 합금을 이용하여 3 가지 구조 (Ni-Pd, Ni-Pd/TiN, Ni-Pd/Co/TiN) 중 Cobalt 다층구조를 사용한 구조 (Ni-Pd/Co/TiN)가 면저항이 가장 낮고 안정한 silicide 특성을 갖는 것을 나타냈으며, 고온열처리 $700^{\circ}C$, 30분에서도 낮고 안정한 면저항 특성을 유지시켜 열안정성을 개선하였다.

  • PDF

A Study on the Feeding Distance of Aluminium Alloy Casting (알루미늄합금(合金) 주물(鑄物)의 급탕(給湯)거리에 관(關)한 연구(硏究))

  • Jung, Woon-Jae;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.3 no.1
    • /
    • pp.13-21
    • /
    • 1983
  • In order to determine the feeding distance of aluminiun alloys (Alsi7Mg and AlCu4Ti) bar castings in the sand mold, the distance of the sound castings has been observed by radiograph for various risers, melt treatment, and casting design. Variation of porosity and hardness with the distance from the riser were also measured in order to determine the casting soundness. The results obained were as follows; 1) The modulus of riser should be 1.4 times of the casting`s 2) The maximum distance which can be made sound is greatly dependent on chemical composition and ingate location, and follows the rules given by the formula; a) When the melt flows into the casting first, and the riser afterward, D = 37.7 ${\sqrt{T}}$ for AlSi7Mg D = 31.2 ${\sqrt{T}}$ for pure aluminium D ${\ge}$ 54.8 ${\sqrt{T}}$ for AlCu4Ti Where T = casting thickness in mm Of this maximum distance, $aa{\sqrt{T}}$ for AlSi7Mg and 7.5 ${\sqrt{T}}$ for pure aluminium is made sound by the chilling effect of the casting edge. b) When the melt flows into the casting passing through the riser, $30{\times}30{\times}600mm$ bars can be made sound in all cases 3) Percentage of porosity is higer in AlCu4Ti than AlSi7Mg. And it is increased gradually by moving closer to the riser in case of $30{\times}30{\times}600mm$ bars, but for the $30{\times}30{\times}600mm$ bars it is increased gradually by moving closer to the center of bars. 4) Hardness variation is similar to the tendency of porosity. And it decreased gradually with approaching to the center in case of $30{\times}30{\times}600mm$ bars.

  • PDF

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF