• Title/Summary/Keyword: SiC power semiconductor

Search Result 144, Processing Time 0.019 seconds

Dry Etching Characteristics of $YMnO_3$ Thin Films Using Inductively Coupled Plasma (유도결합 플라즈마를 이용한 $YMnO_3$ 박막의 건식 식각 특성 연구)

  • 민병준;김창일;창의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • YMnO$_3$ films are excellent gate dielectric materials of ferroelectric random access memories (FRAMs) with MFSFET (metal -ferroelectric-semiconductor field effect transistor) structure because YMnO$_3$ films can be deposited directly on Si substrate and have a relatively low permittivity. Although the patterning of YMnO$_3$ thin films is the requisite for the fabrication of FRAMs, the etch mechanism of YMnO$_3$ thin films has not been reported. In this study, YMnO$_3$thin films were etched with Cl$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ film is 285$\AA$/min under Cl$_2$/(Cl$_2$+Ar) of 1.0, RF power of 600 W, dc-bias voltage of -200V, chamber pressure of 15 mTorr and substrate temperature of $25^{\circ}C$. The selectivities of YMnO$_3$ over CeO$_2$ and $Y_2$O$_3$ are 2.85, 1.72, respectively. The selectivities of YMnO$_3$ over PR and Pt are quite low. Chemical reaction in surface of the etched YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS) surface of the selected YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy(XPS) and secondary ion mass spectrometry (SIMS). The etch profile was also investigated by scaning electron microscopy(SEM)

  • PDF

Correlation between Reverse Voltage Characteristics and Bypass Diode Operation with Different Shading Conditions for c-Si Photovoltaic Module Package

  • Lim, Jong-Rok;Min, YongKi;Jung, Tae-Hee;Ahn, Jae-Hyun;Ahn, Hyung-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • A photovoltaic (PV) system generates electricity by installing a solar energy array; therefore, the photovoltaic system can be easily exposed to external factors, which include environmental factors such as temperature, humidity, and radiation. These factors-as well as shading, in particular-lead to power degradation. When there is an output loss in the solar cell of a PV module package, the output loss is partly controlled by the bypass diode. As solar cells become highly efficient, the characteristics of series resistance and parallel resistance improve, and the characteristics of reverse voltage change. A bypass diode is connected in parallel to the string that is connected in series to the PV module. Ideally, the bypass diode operates when the voltage is -0.6[V] around. This study examines the bypass diode operating time for different types of crystalline solar cells. It compares the reverse voltage characteristics between the single solar cell and polycrystalline solar cell. Special modules were produced for the experiment. The shading rate of the solar cell in the specially made solar energy module was raised by 5% each time to confirm that the bypass diode was operating. The operation of the bypass diode is affected not only by the reverse voltage but also by the forward bias. This tendency was verified as the number of strings increased.

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

The Effect of Mg Precursors on Optical and Structural Characteristics of Sol-Gel Processed Mg0.3Zn0.7O Thin Films (졸-겔법으로 성장시킨 Mg0.3Zn0.7O 박막의 Mg 전구체의 종류에 따른 광학적·구조적 특성에 관한 연구)

  • Yeom, Ahram;Kim, Hong Seung;Jang, Nak Won;Yun, Young;Ahn, Hyung Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.214-218
    • /
    • 2020
  • In this study, MgxZn1-xO thin films, which can be applied not only to active layers of light-emitting devices (LEDs), such as UV-LEDs, but also to solar cells, high mobility field-effect transistors, and power semiconductor devices, are fabricated using the sol-gel method. ZnO and Mg0.3Zn0.7O solution synthesized by the sol-gel method and the thin film were grown by spin coating on a Si (100) substrate and sapphire substrate. The solutions are synthesized by dissolving precursor materials in 2-methoxyethanol (2-ME) solvent, and then monoethanolamine (MEA) was added to the mixed solution as a sol stabilizer. Zinc acetate dihydrate is used as a ZnO precursor, while Mg nitrate hexahydrate and Mg acetate tetrahydrate are used as an MgO precursor. Then, the optical and structural characteristics of the fabricated thin films are compared. The molar concentration of the Zn precursor in the solvent is fixed at 0.3 M, and the amount of the Mg precursor is 30% of Mg2+/Zn2+. The optical characteristics are measured using an UV-vis spectrophotometer, and the transmittance of each wavelength is measured. Structural characteristics are measured using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Composition analyses are performed using energy dispersive X-ray spectroscopy (EDS). The Mg0.3Zn0.7O thin film was well formed at the ratio of the Mg precursor added regardless of the type of Mg precursor, and the c-axis of the thin film was decreased, while the band gap was increased to 3.56 eV.