DOI QR코드

DOI QR Code

The Effect of Mg Precursors on Optical and Structural Characteristics of Sol-Gel Processed Mg0.3Zn0.7O Thin Films

졸-겔법으로 성장시킨 Mg0.3Zn0.7O 박막의 Mg 전구체의 종류에 따른 광학적·구조적 특성에 관한 연구

  • Yeom, Ahram (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Kim, Hong Seung (Major of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Jang, Nak Won (Major of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Yun, Young (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Ahn, Hyung Soo (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
  • 염아람 (한국해양대학교 전자소재공학전공) ;
  • 김홍승 (한국해양대학교 전자소재공학전공) ;
  • 장낙원 (한국해양대학교 전기전자공학전공) ;
  • 윤영 (한국해양대학교 전파공학과) ;
  • 안형수 (한국해양대학교 전자소재공학전공)
  • Received : 2020.01.30
  • Accepted : 2020.02.24
  • Published : 2020.05.01

Abstract

In this study, MgxZn1-xO thin films, which can be applied not only to active layers of light-emitting devices (LEDs), such as UV-LEDs, but also to solar cells, high mobility field-effect transistors, and power semiconductor devices, are fabricated using the sol-gel method. ZnO and Mg0.3Zn0.7O solution synthesized by the sol-gel method and the thin film were grown by spin coating on a Si (100) substrate and sapphire substrate. The solutions are synthesized by dissolving precursor materials in 2-methoxyethanol (2-ME) solvent, and then monoethanolamine (MEA) was added to the mixed solution as a sol stabilizer. Zinc acetate dihydrate is used as a ZnO precursor, while Mg nitrate hexahydrate and Mg acetate tetrahydrate are used as an MgO precursor. Then, the optical and structural characteristics of the fabricated thin films are compared. The molar concentration of the Zn precursor in the solvent is fixed at 0.3 M, and the amount of the Mg precursor is 30% of Mg2+/Zn2+. The optical characteristics are measured using an UV-vis spectrophotometer, and the transmittance of each wavelength is measured. Structural characteristics are measured using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Composition analyses are performed using energy dispersive X-ray spectroscopy (EDS). The Mg0.3Zn0.7O thin film was well formed at the ratio of the Mg precursor added regardless of the type of Mg precursor, and the c-axis of the thin film was decreased, while the band gap was increased to 3.56 eV.

Keywords

References

  1. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009). [DOI: https://doi.org/10.1088/0034-4885/72/12/126501]
  2. D. K. Hwang, M. C. Jeong, and J. M. Myoung, Appl. Surf. Sci., 225, 217 (2004). [DOI: https://doi.org/10.1016/j.apsusc.2003.10.003]
  3. X. Chen and J. Kang, Semicond. Sci. Technol., 23, 025008 (2008). [DOI: https://doi.org/10.1088/0268-1242/23/2/025008]
  4. P. N. Ni, C. X. Shan, B. H. Li, and D. Z. Shen, Appl. Phys. Lett., 104, 032107 (2014). [DOI: https://doi.org/10.1063/1.4862789]
  5. F. J. Klupfel, H. von Wenckstern, and M. Grundmann, Appl. Phys. Lett., 106, 033502 (2015). [DOI: https://doi.org/10.1063/1.4906292]
  6. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys. Lett., 76, 559 (2000). [DOI: https://doi.org/10.1063/1.125817]
  7. A. Kaushal and Davinder Kaur, Sol. Energy Mater. Sol. Cells, 93, 193 (2009). [DOI: https://doi.org/10.1016/j.solmat.2008.09.039]
  8. Y. Zhang, G. Du, D. Liu. H. Zhu, Y. Cui, X. Dong, and S. Yang, J. Cryst. Growth, 268, 140 (2004). [DOI: https://doi.org/10.1016/j.jcrysgro.2004.04.110]
  9. Z. Vashaei, T. Minegishi, and T. Yao, J. Cryst. Growth, 306, 269 (2007). [DOI: https://doi.org/10.1016/j.jcrysgro.2007.05.011]
  10. S. W. Kang, Y. Y. Kim, C. H. Ahn, S. K. Mohanta, and H. K. Cho, J. Mater. Sci.: Mater. Electron., 19, 755 (2008). [DOI: https://doi.org/10.1007/s10854-007-9403-5]
  11. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998). [DOI: https://doi.org/10.1063/1.121384]
  12. M. Wang, E. J. Kim, S. Kim, J. S. Chung, I. K. Yoo, E. W. Shin, S. H. Hahn, and C. Park, Thin Solid Films, 516, 1124 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.05.039]
  13. A. Singh, A. Vij, D. Kumar, P. K. Khanna, M. Kumar, S. Gautam, and K. H. Chae, Semicond. Sci. Technol., 28, 025004 (2013). [DOI: https://doi.org/10.1088/0268-1242/28/2/025004]
  14. C. Y. Tsay, S. T. Chen, and M. T. Fan, Coatings, 9, 277 (2019). [DOI: https://doi.org/10.3390/coatings9040277]
  15. F. Zhang, B. R. Jang, C. H. Kim, J. H. Lee, H. S. Kim, N. W. Jang, M. W. Pin, and W. J. Lee, J. Korean Phys. Soc., 62, 1295 (2013). [DOI: https://doi.org/10.3938/jkps.62.1295]
  16. W. Chebil, M. A. Boukadhaba, I. Madhi, A. Fouzri, A. Lusson, C. Vilar, and V. Sallet, Phys. B, 505, 9 (2017). [DOI: https://doi.org/10.1016/j.physb.2016.10.028]
  17. J. Liriano, P. Misra, S. Sahoo, and R. S. Katiyar, ECS Trans., 61, 387 (2014). [DOI: https://doi.org/10.1149/06104.0387ecst]