• 제목/요약/키워드: SiC particle

검색결과 518건 처리시간 0.033초

세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화 (Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials)

  • 오상엽;신형섭;서창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

미세 Si 입자를 고려한 Al-1%Si 본딩 와이어의 신선공정해석 (FE-simulation of Drawing Process for Al-1%Si Bonding Wire Considering Fine Si Particle)

  • 고대철;황원호;이상곤;김병민
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.421-427
    • /
    • 2006
  • Drawing process of Al-1%Si bonding wire considering fine Si particle is analyzed in this study using FE-simulation. Al-1%Si boding wire requires electric conductivity because Al-1%Si bonding wire is used for interconnection in semiconductor device. About 1% of Si is added to Al wire for dispersion-strengthening. Distribution and shape of fine Si particle have strongly influence on the wire drawing process. In this study, therefore, the finite-element model based on the observation of wire by continuous casting is used to analyze the effect of various parameters, such as the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle on wire drawing processes. The effect of each parameter on the wire drawing process is investigated from the aspect of ductility and defects of wire. From the results of the analysis, it is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-1 %Si wire.

AC4C 합금의 기계적 성질에 미치는 주조조건과 열처리의 영향에 관한 연구 (The Effect of Casting Condition and Heat Treatment on the Mechanical Properties of AC4C Alloy Castings)

  • 강효경;천병욱;최창옥
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.450-461
    • /
    • 1993
  • AC4C alloy casts in the metallic mold, zircon sand mold, silica sand mold and shell mold with the pouring temperatures of 680, 710 and $740^{\circ}C$ have been investigated. The tensile strength, elongation and hardness of AC4C alloy castings have been influenced by the kind of molds used. The mechanical properties in zircon sand mold castings were greater than those in other sand mold castings, but were inferior to the properties in metallic mold castings. Eutectic Si particle size and DAS were increased in the order of metallic mold, ziron sand mold, silica sand mold and shell mold. Also, they were increased with the increase of pouring temperatures. DAS, eutectic Si particle size and grain size decreased with the increase of mechanical properties as the cooling rate increased. The eutectic Si particle size and DAS of AC4C alloy castings after T6 treatment were decreased in as-cast. The variation of eutectic Si particle size has been effected on the tensile strength, elongation and fractured surface.

  • PDF

무가압함침법에 의한 SiCp/AC8A 복합재료의 제조 및 특성 (Fabrication and Characteristics of SiCp/AC8A Composites by Pressureless Metal Infiltration Process)

  • 김재동;고성위
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 2000
  • The SiCp/AC8A composites were fabricated by the pressureless metal infiltration process successfully. The effect of additional Mg, which were mixed with SiC particles to promote interfacial wetting between the reinforcement and matrix alloy, and particle size on the mechanical properties was investigated. By increasing the additional Mg content the hardness of SiCp/AC8A composites was increased due to the hard reaction products, but the bending strength was decreased by the excess reaction of Mg and high porosity level when the additional Mg content is over 7%. The Hardness and bending strength was increased by decreasing the size of SiC particle.

  • PDF

SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동 (Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite)

  • 이상협;최영근;김상태
    • Composites Research
    • /
    • 제22권3호
    • /
    • pp.74-81
    • /
    • 2009
  • 본 연구는 SiC 입자 강화된 알루미늄기 복합재료와 SiC 휘스커 강화된 알루미늄기 복합재료를 이용해서 평면굽힘피로시험을 행했다. 표면미소피로균열의 발생 및 진전거동은 레프리카법으로 연속관찰을 했고 파괴원인과 파괴기구를 규명하기 위해서 주사전자현미경을 이용했다. 두 재료 모두 da/dn - $K_{max}$ 관계에서 고응력 레벨에서는 $K_{max}$의 증가에 따라 da/dn이 증가 했지만, 저응력 레벨에서는 da/dn이 감소하다가 증가하는 것을 알 수 있다.

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar;Kumar, B. Venkata Manoj;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.581-596
    • /
    • 2016
  • A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.

서브마이크론/나노 크기의 SiC 비율변화에 따른 ZrB2-SiC 세라믹스의 열적, 기계적 특성 (Thermal and Mechanical Properties of ZrB2-SiC Ceramics Fabricated by Hot Pressing with Change in Ratio of Submicron to Nano Size of SiC)

  • 김성원;채정민;이성민;오윤석;김형태
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.410-415
    • /
    • 2013
  • $ZrB_2$-SiC ceramics are fabricated via hot pressing with different ratios of submicron or nano-sized SiC in a $ZrB_2$-20 vol%SiC system, in order to examine the effect of the SiC size ratio on the microstructures and physical properties, such as thermal conductivity, hardness, and flexural strength, of $ZrB_2$-SiC ceramics. Five different $ZrB_2$-SiC ceramics ($ZrB_2$-20 vol%[(1-x)SiC + xnanoSiC] where x = 0.0, 0.2, 0.5, 0.8, 1.0) are prepared in this study. The mean SiC particle sizes in the sintered bodies are highly dependent on the ratio of nano-sized SiC. The thermal conductivities of the $ZrB_2$-SiC ceramics increase with the ratio of nano-sized SiC, which is consistent with the percolation behavior. In addition, the $ZrB_2$-SiC ceramics with smaller mean SiC particle sizes exhibit enhanced mechanical properties, such as hardness and flexural strength, which can be explained using the Hall-Petch relation.

The effect of particle size on tool wear of SiCp-reinforced metal matrix composite

  • Sahin, Y.;Sur, G.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.237-239
    • /
    • 2002
  • The effect of particle sizes of the metal matrix composites containing 10 wt.%SiCp was investigated with using various tools. The results showed that tool life decreased considerably with increasing particle size and cutting speed. The wear resistance of TiC-coated tools was considerably higher than that of the other tools. It was observed that abrasive wear was the main responsible mechanism for wear of the tool thermal cracks were at high speed while a built-edge formation was also evident at lower speed.

  • PDF

무가압 침투에 의하여 제조된 Al-5Mg-X(Si, Cu, Ti)/SiCp 복합재료의 시효 및 마멸특성에 관한 연구 (A Study on Aging and Wear Behaviors of Al-5Mg-X(Si, Cu, Ti)/SiCp Composites Fabricated by Pressureless Infiltration Method)

  • 우기도;김석원;나홍석;문호정
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.300-306
    • /
    • 2000
  • The objective of this work was to investigate the effects of SiC particle size(50, 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on aging behavior in Al-5Mg-X(Si,Cu,Ti)/SiCp composites fabricated by pressureless infiltration method using hardness and wear test, scanning electron microscopy(SEM) and differential scanning calorimetry(DSC). The peak aging time in Al-5Mg-X(Si, Cu, Ti)/SiCp(50, 100 ${\mu}m$) composites is shorter than Al-5Mg-0.3Si alloy.The peak aging time of 50 ${\mu}m$ SiC particle reinforced Al-5Mg-X(Si,Cu,Ti) composites is shorter than those of 100 ${\mu}m$ SiC particle reinforced of Al-5Mg-X(Si,Cu,Ti) composites. The Al-5Mg-0.3Si-0.1Cu-0.1Ti/SiCp(50 ${\mu}m$) composites aged at $180^{\circ}C$ has higher hardness and better wear resistance than any other aged composite.The aging effect is promoted by the addition of Si and Cu in Al-5Mg/SiCp composites, so the wear resistance of Al-5Mg/SiCp composites with Si and Cu elements is enhanced by the aging treatment.

  • PDF